Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  quantum transport
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Content available remote Transport in nanostructures. Recent developments
The recent work on the transport through nanostructures is discussed. It turns out that such structures very often directly serve as monitoring and/or controlling devices. They enable us to study transport properties and many body effects in highly controlled conditions. The simplest configuration discussed in the paper consists of a quantum dot (QD) connected to two external electrodes via tunnel barriers. Another important goal of the recent studies is to use the electron spin instead of charge in modern electronic devices. For the realization of electronics with spins (called spintronics), a precise control and efficient monitoring of spins is necessary. One way of achieving the goal that is briefly discussed in the paper is by means of the electric field in the presence of spin-orbit coupling via the so-called spin Hall effect (SHE).
Content available remote 3D quantum mechanical simulation of square nanowire MOSFETs by using NEGF method
In order to investigate the specifications of nanoscale transistors, we have used a three dimensional (3D) quantum mechanical approach to simulate square cross section silicon nanowire (SNW) MOSFETs. A three dimensional simulation of silicon nanowire MOSFET based on self consistent solution of Poisson-Schrödinger equations is implemented. The quantum mechanical transport model of this work uses the non-equilibrium Green’s function (NEGF) formalism. First, we simulate a double-gate (DG) silicon nanowire MOSFET and compare the results with those obtained from nanoMOS simulation. We understand that when the transverse dimension of a DG nanowire is reduced to a few nanometers, quantum confinement in that direction becomes important and 3D Schrödinger equation must be solved. Second, we simulate gate-all-around (GAA) silicon nanowire MOSFETs with different shapes of gate. We have investigated GAA-SNW-MOSFET with an octagonal gate around the wire and found out it is more suitable than a conventional GAA MOSFET for its more I on/I off, less Drain-Induced-Barrier-Lowering (DIBL) and less subthreshold slope.
In recent years, type-II superlattice-based devices have completed the offer of the electronic industry in many areas of applications. Photodetection is one of them, especially in the midinfrared wavelength range. It is due to the unique feature of a superlattice material, which is a tuneable bandgap. It is also believed that the dark current of superlattice-based photodetectors is strongly suppressed due to the suppression of the band-to-band tunnelling current in a superlattice material. This argument relies, however, on a semi-classical approach that treats superlattice as a bulk material with effective parameters extracted from the k·p analysis. In the paper, a superlattice device is analysed on a quantum level: the nonequilibrium Green’s function method is applied to the two-band Hamiltonian of the InAs/GaSb superlattice p-i-n diode. The analysis concentrates on the band-to-band tunnelling with the aim to validate the correctness of a semi-classical description of the phenomenon. The results of calculations reveal that in a superlattice diode, the inter-band tunnelling occurs only for certain values of energy and in-plane momentum, for which electronic and hole sub-bands cross. The transitions occurring for vanishing in-plane momentum produce resonances in the current-voltage characteristics - the feature which was reported in a few experimental observations. This scenario is quite different from that occurring in bulk materials, where there is a range of energy-momentum pairs for which the band-to-band tunnelling takes place, and so current-voltage characteristics are free from any resonances. However, simulations show that, while not justified for a detailed analysis, the semi-classical description can be applied to superlattice-based devices for an ‘order of magnitude’ estimation of the band-to-band tunnelling current.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.