Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Content available remote Wittig and Wittig-Horner reactions under phase transfer catalysis conditions
Wittig and Wittig-Horner reactions are favorite tools in preparative organic chemistry. These olefination methods enjoy widespread and recognition because of their simplicity, convenience, and effciency. Phase transfer catalysis (PTC) is a very important method in synthetic organic chemistry having many advantages over conventional, homogenous reaction procedures. In this paper, we attempt to summarize the aspects concerning Wittig and Wittig-Horner reactions that take place under phase transfer catalysis conditions.
Partial Least Squares Discriminant Analysis (PLS-DA) is employed to obtain novel combinations of energetic terms present in classical scoring functions, which exceed and compensates the “traditional” consensus scheme. These novel scoring functions were involved to rank the database of indirubin inhibitors of glycogen synthase kinase-3β and cyclin dependent kinase-2 decoys from Directory of Useful Decoys. The ability of docking-scoring algorithm to prioritize the actives is assessed by means of several metrics. The best classification function includes donor component of Chemgauss2, steric contribution from Chemgauss3 and rotatable bond term of ScreenScore and provide significant improvement of enrichment factor at 5% of database. [...]
The current study describes the development of in silico models based on a novel alternative of the MTD-PLS methodology (Partial-Least-Squares variant of Minimal Topologic Difference) developed by our group to predict the inhibition of GSK-3β by indirubin derivatives. The new MTD-PLS methodology involves selection rules for the PLS equation coefficients based on physico-chemical considerations aimed at reducing the bias in the output information. These QSAR models have been derived using calculated fragmental descriptors relevant to binding including polarizability, hydrophobicity, hydrogen bond donor, hydrogen bond acceptor, volume and electronic effects. The MTD-PLS methodology afforded moderate but robust statistical characteristics (R2 Y(CUM) = 0.707, Q2(CUM) = 0.664). The MTD-PLS model obtained has been validated in terms of predictive ability by joined internal-external cross-validation applying Golbraikh-Tropsha criteria and Y-randomization test. The information supplied by the MTD-PLS model has been evaluated against Fujita-Ban outcomes that afforded a statistically reliable model (R2=0.923). Furthermore, the results originated from QSAR models were laterally validated with docking insights that suggested the substitution pattern for the design of new indirubins with improved pharmacological potential against GSK-3β. The new restriction rules introduced in this paper are applicable and provide reliable results in accordance with physico-chemical reality.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.