Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 17

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Members of the Obg subfamily of small GTP-binding proteins (called Obg, CgtA, ObgE or YhbZ in different bacterial species) have been found in various prokaryotic and eukaryotic organisms, ranging from bacteria to humans. Although serious changes in phenotypes are observed in mutant bacteria devoid of Obg or its homologues, specific roles of these GTP-binding proteins remain largely unknown. Recent genetic and biochemical studies, as well as determination of the structures of Obg proteins from Bacillus subtilis and Thermus thermophilus, shed new light on the possible functions of the members of the Obg subfamily and may constitute a starting point for the elucidation of their exact biological role.
EN
Bioluminescence, the phenomenon of light production by living organisms, occurs in forms of life as various as bacteria, fungi and animals. Nevertheless, light-emitting bacteria are the most abundant and widespread of luminescent organisms. Interestingly, most species of such bacteria live in marine environments. In this article, the biochemical mechanism of bacterial luminescence and its genetic regulation are summarized. Although the biochemistry and genetics of light emission by cells have been investigated in detail, the biological role of bacterial luminescence has remained obscure. Here, we discuss recent discoveries that shed new light on this problem. Finally, we provide examples of how bacterial luminescence can be employed in marine biotechnology, especially in the detection of toxic and mutagenic pollution in aquatic environments.
XX
In addition to 2',7'-bis-(2-carboxyethyl)-5(6)- carboxyfluorescein (BCECF) used so far to monitor intramitochondrial pH, two other fluorescent pH indicators, 4',5'-dimethyl-5(6)-carboxyfluorescein (DMCF) and carboxyseminaphthofluorescein (carboxy-SNAFL-1), were applied for this purpose. These probes are taken up by isolated rat liver mitochondria in form of diacetate esters, hydrolyzed within mitochondria to free acids, and respond to changes of intramitochondrial pH by changing their fluorescence emission intensity. With all three probes energization of mitochondria by electron donors or acceptors was accompanied by fluorescence changes characteristic for alkalization, whereas deenergization by respiratory inhibitors or protonophores produced changes typical for acidification. Contrary to this, transition from State 4 to State 3, known to shift intramitochondrial pH towards acidification (equivalent to a decrease of ApH), was accompanied by paradoxical responses of the fluorescent pH probes used: the fluorescence of DMCF increased as if the matrix compartment became more alkaline, the fluorescence of BCECF, measured in single excitation/emission wavelength mode, did not change, and the fluorescence of carboxy-SNAFL-1 could be interpreted as either alkalization or acidification, depending on the excitation/emission wavelength pair used. It was shown that depletion of intramitochondrial Mg2+ and Ca2+ using divalent metal ionophore A23187 decreased fluorescence intensity with all three probes examined, whereas subsequent addition of Mg2+ or Ca2+ increased the fluorescence. It is therefore proposed that the atypical response of intramitochondrial pH indicators upon State 4 - State 3 transition is due to changes of intramitochondrial free Mg2+, as related to different complexing abilities of ATP and ADP towards magnesium.
EN
groES and groEL genes encode two co-operating proteins GroES and GroEL, belonging to a class of chaperone proteins highly conserved during evolution. The GroE chaperones are indispensable for the growth of bacteriophage λ in Escherichia coli cells. In order to clone the groEL and groES genes of the marine bacterium Vibrio harveyi, we constructed the V. harveyi genomic library in the λEMBL1 vector, and selected clones which were able to complement mutations in both groE genes of E. coli for bacteriophage λ growth. Using Southern hybridization, in one of these clones we identified a DNA fragment homologous to the E. coli groE region. Analysis of the nucleotide sequence of this fragment showed that the cloned region contained a sequence in 71.7% homologous to the 3' end of the groEL gene of E. coli. This confirmed that the λ clone indeed carries the groE region of V. harveyi. The positive result of our strategy of cloning with the use of the genomic library in λ vector suggests that the same method might be useful in the isolation of the groE homologues from other bacteria. The V. harveyi cloned groE genes did not suppress thermosensitivity of the E. coli groE mutants.
EN
Concentration of free cytoplasmic Ca2+ ([Ca2+]i) in Ehrlich ascites tumour cells loaded with fura-2 was measured in single cells applying a video imaging system. In resting cells [Ca2+li amounted to 60 - 340 nM and was increased after addition of 10 mM D-glucose or D-2-deoxyglucose by 80 - 200 nM. This increase occurred within 30 - 60 s following addition of the sugars and lasted for several minutes. Pretreatment of the cells with thapsigargin resulted in a much smaller [Ca2+]i increase after addition of glucose or deoxyglucose and, vice versa, thapsigargin added after the sugars mobilized less Ca2+ than when added before. A possible relation of the [Ca2+]i rise evoked by glucose and deoxyglucose to the Crabtree effect is discussed.
EN
Previously performed experiments showed that methylxanthines, especially caffeine, may protect cells against cytostatic or cytotoxic effects of several aromatic compounds. One of the proposed mechanisms of this protection is based on stacking interactions between π electron systems of polycyclic aromatic molecules. In this work, we demonstrate that caffeine and other methylxanthines  -  pentoxifylline and theophylline - significantly decrease mutagenicity of the anticancer aromatic drugs daunomycin, doxorubicin and mitoxantrone. The spectrophotometric titration of these aromatic compounds by methylxanthines indicated formation of mixed aggregates. The concentrations of free active forms of the drugs decreased when the concentrations of methylxanthines increased in the mixture. Therefore, likely methylxanthines may play a role of scavengers of the free active forms of daunomycin, doxorubicin and mitoxantrone.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.