Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  Carbon nanotubes
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
This work concentrates on stagnation point flow of a nanofluid over an impermeable stretching cylinder with mass transfer and slip effects. Carbon nanotubes (CNTs) and water are used as a nanofluid in the present investigation. Two types of CNTs are used as nanoparticles (i) Single-wall carbon nanotubes (SWCNTs) and (ii) multiwall carbon nanotubes (MWCNTs). Appropriate transformations are used to achieve a system of ordinary differential equations. Convergent series solutions are obtained. Behavior of various parameters on the velocity, temperature and concentration profiles are discussed graphically. Numerical values of skin friction coefficient, Nusselt number and Sherwood number are computed and analyzed.
Carbon nanotubes are among the plethora of novel nanostructures developed since the 1980s. Nanotubes have attracted considerable interest by the scientific community thanks to their extraordinary physical and chemical properties. Research areas have flourished in recent years and now include the nano-electronic, (bio)sensor and analytical field along with many others. This review covers applications of carbon nanotubes in capillary electrophoresis, capillary electrochromatography and microchip electrophoresis. First, carbon nanotubes and a range of electrophoretic techniques are briefly introduced and key references are mentioned. Next, a comprehensive survey of achievements in the field is presented and critically assessed. The merits and downsides of carbon nanotube addition to the various capillary electrophoretic modes are addressed. The different schemes for fabricating electrochromatographic stationary phases based on carbon nanotubes are discussed. Finally, some future perspectives are offered. [...]
Commercial product Degussa TiO2 P25, sol-gel produced TiO2 and TiO2 modified by carbon nanotubes addition (5% of the TiO2 mass) are tested as photocatalysts for the degradation of endocrine disrupting compound 17α-ethynylestradiol (1 µM aqueous solution). The molecular and crystal structure, phase composition, crystallite size, specific surface area, pore average diameter, their area and volume distribution, morphology, IR and UV/Vis spectra of the catalysts are characterized. HPLC is used for estrogen analysis. The sorption ability and photocatalytic activity (measured by degradation rate constant and percentage of the pollutant conversion) of the catalysts under UV (17 W, emission maximum at 254 nm) irradiation is determined. Full destruction of the pollutant is reached after 30 min irradiation in presence of Degussa P25. The performance of some of the catalysts is compared with literature data for their activity under 365 nm-illumination.
This paper is focused on the synthesis and characterization of a novel hybrid material based on cisplatin and docetaxel-loaded functionalized simultanously carbon nanotubes able to be used in cancer therapy as drug delivery system with controlled toxicity. This material was physico-chemically investigated by determining the structure, as evidenced by Fourier transform infrared (FTIR) spectroscopy, transmission electronmicroscopy (TEM) and its stability was studied with the aid of thermogravimetric analysis (TGA). The amount of platinum ions released into the solution of simulated body fluid (SBF) was highlighted by coupled plasma mass spectrometry (ICP-MS). Toxicology experiments were performed with MDA-MB 231 breast cancer epithelial cells. The performance of the new drug delivery hybrid material was compared with functionalised carbon nanotubes with therapeutic agents functionalized with a single therapeutic agent.
The potential of modified multiwalled carbon nanotubes (a solid-phase extraction sorbent), for the simultaneous separation and preconcentration of lead, cadmium and nickel; has been investigated. Lead, cadmium and nickel, were adsorbed quantitatively; on modified multiwalled carbon nanotubes (in the pH range of 2–4). Parameters influencing, the simultaneous preconcentration of Pb(II), Ni(II) and Cd(II) ions (such as pH of the sample, sample and eluent flow rate, type and volume of elution solution and interfering ions), have been examined and optimized. Under the optimum experimental conditions, the detection limits of this method. for Pb(II), Ni(II) and Cd(II) ions, were 0.32, 0.17 and 0.04 ng mL−1 in original solution, respectively. Seven replicate determinations, of a mixture of 2.0 μg mL−1 lead and nickel, and 1.0 μg mL−1 cadmium; gave a mean absorbance of 0.074, 0.151 and 0.310, with relative standard deviation 1.7%, 1.5% and 1.2%, respectively. The method has been applied, to the determination of trace amounts of lead, cadmium and nickel; in biological and water samples, with satisfactory results. [...]
This theoretical study focuses on junctions between the carbon nanotubes (CNTs) and contacting metallic elements of a nanocircuit. Numerical simulations on the conductance and resistance of these contacts have been performed using the multiple scattering theory and the effective media cluster approach. Two models for CNT-metal contacts have been considered in this paper: a) first principles “liquid metal” model and b) semi-empirical model of “effective bonds” based on Landauer notions on ballistic conductivity. Within the latter, which is a more adequate description of chirality effects, we have simulated both single-wall (SW) and multi-wall (MW) CNTs with different morphology. Results of calculations on resistance for different CNT-Me contacts look quantitatively realistic (from several to hundreds kOhm, depending on chirality, diameter and thickness of MW CNT). The inter-wall transparency coefficient for MW CNT has been also simulated, as an indicator of possible ‘radial current’ losses.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.