Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Simple hydrothermal synthesis of Fe3O4-PEG nanocomposite
100%
EN
Abstract We report a one-step hydrothermal synthesis of Fe3O4 nanoparticles coated with Polyethyleneglycol (PEG). The formation of the Fe3O4 core and the polymer coating took place simultaneously. Fe3O4/polyethylene glycol (PEG) magnetic nanocomposite with a core-shell structure with a 17±7 nm crystallite size prepared by simple hydrothermal method. VSM ( Vibrating Sample Magnetometer) analysis proved the superparamagnetic character of the nanocomposite. Graphical abstract [...]
2
Content available remote 2-pyrrolidone - capped Mn3O4 nanocrystals
100%
EN
Water-soluble Mn3O4 nanocrystals have been prepared through thermal decomposition in a high temperature boiling solvent, 2-pyrrolidone. The final product was characterized with XRD, SEM, TEM, FTIR and Zeta Potential measurements. Average crystallite size was calculated as ∼15 nm using XRD peak broadening. TEM analysis revealed spherical nanoparticles with an average diameter of 14±0.4 nm. FTIR analysis indicated that 2-pyrrolidone coordinates with the Mn3O4 nanocrystals only via O from the carbonyl group, thus confining their growth and protecting their surfaces from interaction with neighboring particles. [...]
3
Content available remote A green chemical route for the synthesis of Mn3O4 nanoparticles
100%
EN
A novel environmental friendly, room temperature route using an ionic liquid 1-n-butyl-3-methylimidazolium hydroxide ([BMIM]OH) for the synthesis of Mn3O4 nanoparticles is presented. The product was characterized using Fourier transform infrared spectroscopy, X-ray powder diffraction, and transmission electron microscopy. Phase purity was confirmed by XRD, and X-ray line profile fitting determined a crystallite size of 42 ± 11 nm. TEM analysis revealed various morphologies. EPR measurements have indicated the existence of long-range interactions, due to the wide range of particle sizes and morphologies observed. [...]
EN
Nanocomposites of Polyacrylic acid/polyvinylimidazole (PAA/PVI) with grafted and ungrafted iron oxide nanoparticles were prepared by a Reflux method. The Fe3O4 nanoparticles with 10 nm average diameter were synthesized by controlled co-precipitation and silanization of Si-PVI on Fe3O4 was used to obtain the grafted ones. Grafting becomes important at composites of less PVI that cause drastic decreases in AC conductivity. The content of PVI has important effects on the conductivity mechanism of these composites. The effect of grafting and Polyacrylic acid/polyvinylimidazole molar ratio on the conduction mechanism were studied. The conduction mechanism of iron oxide nanocomposites can be adjusted by changing molar ratio of Polyacrylic acid/polyvinylimidazole and grafting of Fe3O4NPs. [...]
5
Content available remote Sonochemical synthesis and chracterization of Mn3O4 nanoparticles
75%
EN
We report on the synthesis of Mn3O4 nanoparticles (NPs) using a novel sonochemical method without requiring any pH adjustment. Synthesized material was identified as tetragonal hausmannite crystal structure model of Mn3O4 from XRD analysis. Crystallite size was estimated from x-ray line profile fitting to be 17±5 nm. FTIR analysis revealed stretching vibrations of metal ions in tetrahedral and octahedral coordination confirming the crystal structure. TEM analysis revealed a dominantly cubic morphology of NPs with an average size of ∼20 nm. Magnetic evaluation revealed a blocking temperature, T B of 40 K above which the material behaves paramagnetic. Asymmetric coercive field is attributed to the interaction between ferromagnetic Mn3O4 and antiferromagnetic Mn oxide at the surface of nanoparticles. [...]
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.