We study the initial-value problem for parabolic equations with mixed partial derivatives and constant coefficients, and with nonlinear and nonlocal right-hand sides. Nonlocal terms appear in the unknown function and its gradient. We analyze convergence of explicit finite difference schemes by means of discrete fundamental solutions.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this research, mathematical modeling of a duct heater has been performed using energy conservation law, Stefan-Boltzman law in thermal radiation, Fourier's law in conduction heat transfer, and Newton's law of cooling in convection heat transfer. The duct was divided to some elements with equal length. Each element has been studied separately and air physical properties in each element have been used based on its temperature. The derived equations have been solved using the finite difference method and consequently air temperature, internal and external temperatures of the wall, internal and external convection heat transfer coefficients, and the quantity of heat transferred have been calculated in each element and effects of the variation of heat transfer parameters have been surveyed. The results of modelling presented in this paper can be used for the design and optimization of heat exchangers.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.