Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Functionalization of multi-walled carbon nanotubes (MWCNTs) has an effect on the dispersion of MWCNT in the epoxy matrix. Samples based on two kinds of epoxy resin and different weight percentage of MWCNTs (functionalized and non-functionalized) were prepared. Epoxy/carbon nanotubes composites were prepared by different mixing methods (ultrasounds and a combination of ultrasounds and mechanical mixing). CNTs modified with different functional groups were investigated. Surfactants were used to lower the surface tension of the liquid, which enabled easier spreading and reducing the interfacial tension. Solvents were also used to reduce the liquid viscosity. Some of them facilitate homogeneous dispersion of nanotubes in the resin. The properties of epoxy/nanotubes composites strongly depend on a uniform distribution of carbon nanotubes in the epoxy matrix. The type of epoxy resin, solvent, surfactant and mixing method for homogeneous dispersion of CNTs in the epoxy matrix was evaluated. The effect of CNTs functionalization type on their dispersion in the epoxy resins was evaluated on the basis of viscosity and microstructure studies.
2
Content available remote Polyurethanes used in the endoprosthesis of joints
100%
EN
The aim of the studies presented in this paper was the selection of the polyurethanes synthesized from different substrates in order to obtain i) ceramic - biodegradable polymer composite and ii) polyurethane resistant to abrasive wear. The polyurethanes were obtained from the crystalline prepolymers extended by water, because it may have a beneficial effect on the toxicity of the material. The properties of PUs were investigated using infrared spectroscopy, thermogravimetry, differential scanning calorimetry and scanning electron microscopy. In all the tested polyurethanes the peak from the reactive -NCO groups was not observed, which indicates that all the substrates are fully reacted. Such polyurethanes are characterized by interesting properties with the perspective use as components of ceramic-polymer joints endoprosthesis. The designed endoprosthesis should fulfill at least three functions: load bearing function (ceramic core), fastening and stabilizing endoprosthesis to the bone (composite ceramics - biodegradable polymer) and tribologic function allowing mating with parts of the prosthesis (polyurethane layer resistant to abrasive wear).
3
Content available remote Polyurethanes from the crystalline prepolymers resistant to abrasive wear
100%
EN
The research aimed at the selection of polyurethanes synthesized from poly(tetramethylene ether) glycol (PTMEG), as well as from two different isocyanates 4,4′-methylenebis(cyclohexyl)isocyanate (HMDI) and 4.4′-methylenebis(phenyl isocyanate) (MDI) in order to obtain polyurethane with increased resistance to abrasive wear and degradation for bio-medical application. Polyurethanes were fabricated from crystalline prepolymers extended by water. The paper presents preliminary results on polyurethane surface wettability, friction coefficient for different couples of the co-working materials such as polyurethane-polyurethane, polyurethane-titanium alloy, polyurethane-alumina, in comparison to commonly used polyethylene-titanium alloy. Shear strength of polyurethane-alumina joint, as well as viscosity of prepolymers were also measured. The values of friction coefficient were compared to literature data on commercially available polyurethane with the trade name Pellethane. Polyurethanes obtained are characterized by low abrasive wear and low friction coefficient in couple with the titanium alloy, what makes them attractive as possible components of ceramic-polymer endoprosthesis joints.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.