Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 461

Liczba wyników na stronie
first rewind previous Strona / 24 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  sorption
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 24 next fast forward last
1
Content available The sorption capability of halloysite
100%
EN
Halloysite is commonly occuring in Poland a natural mineral which, due to its structure is very popular among researchers. First of all, the large number of sorption areas and their various selectivity makes the material capable of adsorbing the compounds of different nature at the same time. As a result, there is a lot of possible applications. In addition, ease of functionalization of the surface of the material increases its sorption capacity and makes its more attractive. 
PL
Omówiono wyniki serii obliczeń dotyczących sorpcji wody, metanolu, metanu i ditlenku węgla przy wykorzystaniu modelu sorpcji wielorakiej. Otrzymane wyniki pozwalają na stwierdzenie zasadności przyjętych w modelu założeń, co więcej dają wgląd w strukturę węgla oraz parametry procesu sorpcji.
EN
Series of calculation of sorption isotherms of water, methanol, methane and carbon dioxide with using of multiple sorption model are presented in this work. Obtained results confirm correctness of the model assumptions, moreover give a view to the structure of coal and sorption process parameters.
EN
Research made on the use of diatomites and clinoptyloh'tes in static and dynamic conditions. Usefulness of tested adsorbents for oil derivatives removal in the light of the research made.
EN
The paper presents the results of studies on the preparation and properties of composite granules produced by phase inversion from cellulose (CEL) solutions in 1-ethyl-3-methylimidazole acetate (EMIMAc), containing nano-addition in the form of graphene oxide (GO) in N,N-dimethylformamide (DMF). Water absorption and sorption of such compounds as FeCl3, methylene blue (MB) and bovine serum albumin (BSA) were studied. In addition, attempts were made to investigate the sorption properties of the obtained cellulose granules in terms of metals removal from galvanizing wastewater. Among the many components, iron and lead were found to have the highest concentration (~ 1 mg Fe/dm3; ~2 mg Pb/dm3) in the tested wastewater sample. The qualitative and quantitative composition of the wastewater was examined by UV-Vis spectrophotometry. The studies show that doping of cellulose with Graphene oxide clearly affects the physical properties of this biopolymer. GO improves the water absorption of CEL/GO composite cellulose granules only in the concentration above 0.05% w/w. For a concentration of 0.1% w/w of GO in cellulose, water absorption is increased by ~108% compared to pure cellulose granules. In addition, the use of dry and wet granules in the study changes their sorption properties with respect to all tested substances. Studies on test solutions have shown that the sorption of cellulose granules decreases with increasing molar mass of test compounds, in the following order: FeCl3, methylene blue (MB) and bovine albumin (BSA). This means that the cellulose granules obtained in the experiment are made up of small micropores, which makes the diffusion of compounds of high molecular weight difficult. The best sorption results were obtained for ferric ions and amounted to 66–72% for FeCl3 solution, and ~92% for the wastewater that was sorbed on pure cellulose granules.
EN
This paper summarises the results of methanol sorption on three selected coal samples from Polish collieries. These coals differ in terms of their degree of metamorphism (coal rank), petrography and elemental composition. It was found out that during the sorption of methanol, the sorption capacity is closely related to the structure of the coal surface and the amount of sorbed polar substance tends to decrease with the higher degree of metamorphism. Experimental data were plotted as isotherms. Empirical measurements were supported by thermodynamic analysis of aliphatic hydrocarbons sorption. The procedure is based on the Multisorption Model (MSM) designed for describing small molecules sorption in different types of carbonaceous materials (hard coals, lignites, active carbons).
EN
The main purpose of the work was to check the possibility of using coconut shells for the removal of the dyes popular in the textile industry from aqueous solutions. The sorption abilities of an unconventional sorbent were tested against four anionic dyes: Reactive Black 5, Reactive Yellow 84, Acid Yellow 23, Acid Red 18 as well as two cationic dyes: Basic Violet 10 and Basic Red 46. The scope of research included investigation pertaining to the effect of pH on the effectiveness of sorption of dyes, conducted in order to determine the time of equilibrium of sorption and determine the maximum sorption capacity of coconut shells with respect to pigments. The most favorable pH of sorption for the anionic dyes and Basic Violet 10 was pH 3 and for Basic Red 46 – pH 6. The equilibrium time of sorption was the shortest in the case of acidic dyes (Acid Yellow 23/ Acid Red 18 – 45 min), while the longest in the case of alkaline dyes (Basic Red 46 – 90 min, Basic Violet 10 – 180 min). The sorption capacity of coconut shells in relation to anionic dyes was for Reactive Black 5 – 0.82 mg/g, Reactive Yellow 84 – 0.96 mg/g, Acid Yellow 23 – 0.53 mg/g and for Acid Red 18 – 0.66 mg/g. The tested sorbent showed much higher sorption capacity with respect to the cationic dyes, i.e. Basic Violet 10 (28.54 mg/g) and Basic Red 46 (68.52 mg/g).
EN
As part of the work the high-pressure sorptomat - a novel apparatus for sorption tests under conditions of high gas pressure was developed. The sorption measurement is carried out using the volumetric method, and the precise gas flow pressure regulator is used in the device to ensure isobaric conditions and regulate the sorption pressure in the range of 0-10 MPa. The uniqueness and high precision of sorption measurements with the constructed apparatus are ensured by the parallel use of many pressure sensors with a wide measurement range as well as high precision of measurement - due to the use of precise pressure sensors. The obtained results showed, i.a. that the time of reaching the isobaric conditions of the measurement is about 6-7 seconds and it is so short that it can be considered a quasi-step initiation of sorption processes. Moreover, the results of the measurement pressure stabilization tests, during the CO2 sorption test on activated carbon, have shown that the built-in pressure regulator works correctly and ensures isobaric sorption measurement conditions with the precision of pressure stabilization of ±1% of the measurement pressure. The maximum range of sorption measurement using the high-pressure sorptomat is 0-86 400 cm3/g, and the maximum measurement uncertainty is ±2% of the measured value. The activated carbon sample used for the tests was characterized by a high sorption capacity, reaching 104.4 cm3/g at a CO2 pressure of 1.0 MPa.
8
100%
EN
Adsorption is one of the basic surface phenomena involving saturation of the adsorbent surface with adsorbate molecules located near the adsorbent-adsorbate interface. The processes that are accompanied by the accumulation of adsorbate molecules on the surface are different from absorption, which is related to absorbing molecules into the whole mass and requires diffusion into the interior. If both processes can occur simultaneously, this phenomenon is called sorption. The aim of the present study was to characterize the sorption properties of selected sorbents and to assess the possibility of their application to support the treatment of coking wastewater from ammonium nitrogen, phenol, and TOC. The scope of the study included the examinations of sorption properties of selected sorbents (coal dust, coke dust, biochar), physicochemical tests of coking wastewater after biological treatment, as well as the examinations aimed to determine the dose of adsorbents and time needed to establish the equilibrium state of the process. The results obtained were analyzed for the effect of dose and contact time on the pollutant removal efficiency. The literature describes the efficiency of ammonium nitrogen removal from wastewater using chemical processes. However, there is a lack of studies on the removal of ammonium nitrogen, phenol, and TOC from industrial (coking) wastewater. The conducted study aimed to develop an alternative solution to the currently used conventional methods of removing high concentrations of pollutants from wastewater.
EN
The influence of the degree of deacetylation of chitosan from the range of DD = 75–90% on the effectiveness of sorption of nitrates from aqueous solutions was investigated. The scope of the research included: determining the effect of pH on the effectiveness of N-NO3 binding on chitosan sorbents and determining the sorption capacity of chitosan sorbents with different degrees of deacetylation after 5, 15, 30 and 60 minutes. The effectiveness of sorption of nitrates on chitosan sorbents increased in the series DD=75% < DD=85% < DD=90%. Regardless of the degree of deacetylation, the sorption effectiveness of nitrates on chitosan was the highest at pH 4. The amount of nitrate-related sorbents was the highest after 30 min of sorption. A process time which was too long resulted in desorption of nitrates. The maximum sorption capacity for chitosan with the degree of deacetylation DD = 75, 85 and 90% was 0.59 mg N-NO3/g, 0.60 mg N-NO3/g and 0.87 mg N-NO3/g, respectively.
EN
Type, amount and composition of gases which form in rocks and coals during a metamorphism process depend on a number of factors in particular genetic type of original matter, way and conditions of its gathering, temperature, pressure and geological time. Sorption tests were done by the volumetric method, with the use of adsorption micro-burettes. A major advantage of the measurement set-up is that the surplus amounts of adsorbate can be used in experiments, which is of particular importance when handling sorbents with heterogeneous structure, such as hard coals. Sorbates used in the test program were the vapours of hexane, hex-1-ene, heptane, hept-1-ene, octane and benzene. Measurement results seem to corroborate the hypothesis that sorption of polar substance vapours is chiefly a surface process. Polarity of hard coals, mostly associated with the presence of reactive oxygen groups (nitrogen and sulphuric groups), largely affects the sorption of polar substances and in a most characteristic manner controls the sorption of apolar ones. In the case of the latter, sorption is induced by the action of the dispersive interaction force between the coal surface and the sorbate's polar molecules. The pattern of sorption isotherms indicates that the presence of dual bond affects the sorbent-sorbate interactions and hence the sorption capacity of investigated coals.
EN
The aim of the study is to assess the removal effectiveness of phosphorus compounds by using lanthanum-modified bentonite. This material was produced by the Australian company Phoslock® Water Solutions Pty Ltd. According to the company, Phoslock® has substantial capacity to bound phosphate anions. The investigation was carried out in steady conditions in laboratory model with beakers. The results of the study are related to the determination of hydraulic load, time of mixing and time of sedimentation. Research with synthetic wastewater was conducted in 4 beakers which were mixing by 5, 10, 20 and 30 minutes respectively. Samples for analyzing were taken from each beaker after 30 minutes, 1, 2, 3, 4 and 24 hours of sedimentation. Studies were conducted to determine the optimal dose of Phoslock® with a known concentration of phosphate anions PO43- in artificial wastewater, time of mixing and time of sedimentation. All samples were taken before and after the treatment with Phoslock® and they were analyzed with following parameters: pH, total suspended solids, conductivity, turbidity, color and phosphate concentration. The carried out investigations confirmed high efficiency of phosphate anions PO43- removal (over 95%), and the final concentration as average was 0.1 mg/dm3. The application of Phoslock® for phosphate anions PO43- did not change the pH of final effluent.
EN
In this paper, the sorption capacity of Norit SX2 activated carbon, ground rice husks and C‑160 ion exchange resin in relation to the Cu2+ and Co2+ ions was compared. The studied sorption processes were described using the Langmuir adsorption model. The C‑160 ion exchange resin was characterized by the highest affinity for both Cu2+ and Co2+ ions. It was shown that rice husk and active carbon are efficient sorbents in diluted solutions. The copper recovery for activated carbon, ion exchanger and rice husk was high. The efficiency of this process was 98.1%; 92.3% and 88.9%, respectively. Reducing the volume of acid used for regeneration allowed the solution to be concentrated and facilitated element recovery. Regeneration for cobalt occurred to a lesser extent.
13
100%
EN
The purpose of the study is to determine the sorption capacity of hard coals from Polish collieries with respect to several sorbets: ethane, ethylene, propane, propylene. The knowledge of the sorption capacity of coal with respect to a wide range of sorbates is essential to ensure the miners' safety and to allow for reliable forecasting fire hazard and self-heating of coal. The self-heating process is evaluated using specialist indicators based on hydrocarbon contents in mine air. Coal properties, such as porosity, coal rank, maceral content, moisture, ash and volatile matter contents as well as proportion of mineral substances are of key importance for understanding the processes taking place on the hard coal-gas interface. The quantitative analysis of these parameters supported by sorption tests will provide us information about the coal's structure's tendency to accumulate and release gases and vapours. It is important to determine the accessibility of the internal coal structure to gases and to investigate the influence of the micro- and submicro-porosity on the process of sorption. Concentrations of non-saturated hydrocarbons: ethylene and propylene are good indicators used to evaluate the scale of the self-heating process. Therefore, we need to reliably establish whether hydrocarbons present in mine air are released only through the self-heating process or whether they can be also accumulated in the coal structure and then desorbed when the conditions should change. Although preventive measures have been put place in Polish collieries, endogenous fire are still fairly frequent, so the hazard control based only on concentrations of non-saturated hydrocarbons may prove insufficient. It is also necessary to determine whether those hydrocarbons can be accumulated in coal, what factors will trigger this process and in what extent. Results of such tests will contribute to fire prevention and will help control other hazards associated with underground mining operations.
EN
A search for a sorbent capable of simultaneously extracting both phosphate anions and ammonium cations from a highly competitive medium like the biological environment of the human’s body was realized. For this purpose a comparative study of a sorption of ammonium and phosphate ions from aquatic environments in the absence of any backgrounds electrolytes and from Ringer's solution by activated charcoal, its oxidized forms and mineral amorphous sorbents – powdered titanium silicate, as well as spherically granular hydrous zirconium silicate and titanium dioxide, obtained by original methods of synthesis, as well as some of their ion-substituted forms in comparison with commercially available silica gel was carried out. The features of the sorption of ammonium cations and phosphate anions by the studied sorbents are discussed. It was established that sorption properties of the sorbents depend strongly from their chemical nature. It determines a selectivity of ion-exchange and a possibility of chemosorption processes in Ringer's solution. A relationship between the sorption of calcium cations and phosphate anions from Ringer's solution was supposed which made it possible to assume the chemosorption mechanism. Based on the sorption mechanism understanding the sorption properties of titanium silicate with respect to phosphate anions were considerable improved by converting the initial sample into Ca- and Ce-ion-substituted forms without significant loss of its high sorption properties toward ammonium cations
EN
The weakly basic anion exchangers of the functional tertiary amine gropus with the polystyrene skeleton: Amberlyst A-21 and with acrylic skeleton: Amberlite IRA-67 were investigated as adsorbents of Remazol Black B from aqueous solutions. Experiments were carried out as function of contact time (1–240 min.), initial dye concentration (50–500 mg/dm3), pH (1–12), temperature (298–318 K) and ionic strength (NaCl). The results indicate that the investigated anion exhchangers are suitab;e as adsorbent material of Remazol Black B from aqueous solutions
EN
Here, we report the fabrication of supermacroporous monolith sorbents for acidic dye removal via chitosan cross-linking with ethylene glycol diglycidyl ether (EGDGE) in acidic medium at sub-zero temperature. The developed porous structure with the thickness of polymer walls in the range of a few microns and a high content of primary amino groups determined the high sorption capacity of the sorbents toward Alizarin Red in a broad pH range (2–8). Due to the cross-linking via hydroxyl groups of the chitosan, the static sorption capacity of the fabricated materials was higher than that of chitosan flakes, even for sorbents cross-linked at EGDGE:NH2-chitosan with molar ratio 2:1. The monolith sorbents were mechanically stable and supported flow rates up to 300 bed volumes per hour. The breakthrough curve of Alizarin Red sorption showed that the effective dynamic sorption capacity was 283 mg/g, and 100% of the dye could be removed from the solutions with concentration of 100 mg/L. The monoliths can be regenerated with 0.3s M NaOH solution and used in several consecutive cycles of sorption/regeneration without loss of efficacy.
17
100%
PL
Przeprowadzono pomiary sorpcyjne, z zastosowaniem mikrobiuretek cieczowych, próbek węgli kamiennych pobranych z KWK Jaworzno, Sośnica, Pniówek. Jako sorbaty zastosowano pary: n-heptanu i hept-1-enu. Analiza uzyskanych wyników pozwoliła na przyjęcie następującej hipotezy: sorpcja par substancji apolarnych ma charakter głównie powierzchniowy i w istotny sposób zależna jest od porowatości węgli kamiennych. Przebieg izoterm sorpcji wskazuje także, iż obecność wiązania podwójnego wpływa na oddziaływania typu sorbent-sorbat, a tym samym wielkość chłonności sorpcyjnej badanych węgli.
EN
There were sorptive measurements conducted. They were undertaken whith the use of liquid microburettes and coal samples from KWK: Jaworzno, Sośnica and Pniówek. Vapours of n-heptane and hept-1-ene were used as sorbates. In the investigation there was the hypothesis estimated: the sorption of unpolar substances vapours is mainly superficial and is significantly dependent on coal porosity. The course of sorption isotherms shows the influence of double bond on sorbent-sorbate system. It is connected with the value of sorption capacity of studied coals.
EN
The determination of the sorption properties of peat from different depths was done. The research was carried out on the intermediate littoral peats near the Baltic Sea from the layers situated at every 0.5 m at depths up to 3 m . The effectiveness of peat sorbents has been detd. based on the isotherms of SO2, benzene, and CO2 sorption. This was done using the gravimetric method. The interpretation of the benzene sorption isotherms was carried out on the basis of the theory of volumetric filling of pores. These results were compared with respectively investigations on samples of steam-activated carbons (based on hard coal and wood tar) and demineralized brown coal.
EN
The paper presents the results of the researches in sorption process. Selected waste materials were checked to build a barrier for pesticide migration from existing graveyards. Due to primary researches Sokolka compost was selected for further researches. The sorption barrier was designed by the surface and underground water run-off. The line of the barrier was made around the centre of graveyard, 0.5 meter width and 4.0 meters deep up to the non-permeable ground layer. GC analyses have shown the presence of pesticides in piezometer before the barrier and no pesticides in water outside sorption barrier. Due to researches it was found that prevention barrier was successful.
EN
IR and UV absorption spectra show that selenopentathionate anions are sorbed into the polyamide 6 films if they are treated with 0.025-0.2 mol/dm3 solutions of potassium selenopentathionate, K2SeS4O6, in 0.1 mol/dm3 HCl at 30 and 50 C. The concentration of sorbed selenopentathionate ions increases with the increase of the duration of treatment, concentration and temperature of SeS4O6 2 solution. The mixed copper sulfide-copper selenide, CuxS-CuySe, layers are formed in the surface of polyamide 6 after the treatment of chalcogenized polymer with Cu(II/I) salt solution (10 min, 78 C): the anions SeS4O6 2 containing selenium and sulfur atoms of low oxidation state react with the copper(II/I) ions. The conditions of a polymer initial chalcogenation determine the concentration of copper and the composition of chalcogenide layer: the concentration of copper in the chalcogenide layer increases with the increase of initial chalcogenation duration, temperature and the concentration of solution. The results of XRD confirmed the formation of mixed copper sulfide-copper selenide layers on the surface of polyamide 6: four copper sulfide phases, chalcocite, Cu2S, digenite, Cu1.8S, djurleite, Cu1.9375S, anilite, Cu1.75S, and five copper selenide phases, bellidoite, Cu2Se, umangite, Cu3Se2, klockmannite, CuSe, krutaite, CuSe2 and Cu2Sex, were identified in the layers. The phase composition of layers changes depending on the conditions of the polymer initial treatment in a K2SeS4O6 solution. The chemical composition of CuxS-CuySe layers was characterized by energy dispersive spectroscopy XPS. XPS results confirmed the formation of mixed copper chalcogenides of various phases on the surface of a polyamide 6. At room temperature, electrical sheet resistance of the layers vary from 12.2 / to 4.7 MOmega/ . The determined regularities enable formation of the layers of copper sulfide-copper selenide on the surface of a polyamide 6 of desirable composition and conductivity by the sorption method using the solutions of potassium selenopentathionate as precursor.
first rewind previous Strona / 24 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.