Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  asymptotic iteration method
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote An alternative solution of diatomic molecules
100%
Open Physics
|
2014
|
tom 12
|
nr 2
103-110
EN
The spectrum of r −1 and r −2 type potentials of diatomic molecules in radial Schrödinger equation are calculated by using the formalism of asymptotic iteration method. The alternative method is used to solve eigenvalues and eigenfunctions of Mie potential, Kratzer-Fues potential, Coulomb potential, and Pseudoharmonic potential by determining the α, β, γ and σ parameters.
2
Content available remote Bound state of solution of Dirac-Coulomb problem with spatially dependent mass
80%
EN
The bound state solution of Coulomb Potential in the Dirac equation is calculated for a position dependent mass function M(r) within the framework of the asymptotic iteration method (AIM). The eigenfunctions are derived in terms of hypergeometric function and function generator equations of AIM.
Open Physics
|
2008
|
tom 6
|
nr 4
879-883
EN
We study the application of the asymptotic iteration method to the Khare-Mandal potential and its PT-symmetric partner. The eigenvalues and eigenfunctions for both potentials are obtained analytically. We have shown that although the quasi-exactly solvable energy eigenvalues of the Khare-Mandal potential are found to be in complex conjugate pairs for certain values of potential parameters, its PT-symmetric partner exhibits real energy eigenvalues in all cases.
4
Content available remote The Klein-Gordon equation with the Kratzer potential in d dimensions
70%
Open Physics
|
2008
|
tom 6
|
nr 3
717-729
EN
We apply the Asymptotic Iteration Method to obtain the bound-state energy spectrum for the d-dimensional Klein-Gordon equation with scalar S(r) and vector potentials V(r). When S(r) and V(r) are both Coulombic, we obtain all the exact solutions; when the potentials are both of Kratzer type, we obtain all the exact solutions for S(r) = V(r); if S(r) > V(r) we obtain exact solutions under certain constraints on the potential parameters: in this case, a possible general solution is found in terms of a monic polynomial, whose coefficients form a set of elementary symmetric polynomials.
EN
We investigate the effect of the isotropic velocity-dependent potentials on the bound state energy eigenvalues of the Morse potential for any quantum states. When the velocity-dependent term is used as a constant parameter, ρ(r) = ρ 0, the energy eigenvalues can be obtained analytically by using the Pekeris approximation. When the velocity-dependent term is considered as an harmonic oscillator type, ρ(r) = ρ 0 r 2, we show how to obtain the energy eigenvalues of the Morse potential without any approximation for any n and ℓ quantum states by using numerical calculations. The calculations have been performed for different energy eigenvalues and different numerical values of ρ 0, in order to show the contribution of the velocity-dependent potential on the energy eigenvalues of the Morse potential.
6
Content available remote Schrödinger spectrum generated by the Cornell potential
60%
EN
The eigenvalues Ednl (a, c) of the d-dimensional Schrödinger equation with the Cornell potential V(r) = −a/r + c r, a, c > 0 are analyzed by means of the envelope method and the asymptotic iteration method (AIM). Scaling arguments show that it is suffcient to know E(1, λ), and the envelope method provides analytic bounds for the equivalent complete set of coupling functions λ(E). Meanwhile the easily-implemented AIM procedure yields highly accurate numerical eigenvalues with little computational effort.
EN
The asymptotic iteration method is used to find exact and approximate solutions of Schrödinger’s equation for a number of one-dimensional trigonometric potentials (sine-squared, double-cosine, tangent-squared, and complex cotangent). Analytic and approximate solutions are obtained by first using a coordinate transformation to reduce the Schrödinger equation to a second-order differential equation with an appropriate form. The asymptotic iteration method is also employed indirectly to obtain the terms in perturbation expansions, both for the energies and for the corresponding eigenfunctions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.