Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
w słowach kluczowych:  NEGF
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
Content available remote 3D quantum mechanical simulation of square nanowire MOSFETs by using NEGF method
In order to investigate the specifications of nanoscale transistors, we have used a three dimensional (3D) quantum mechanical approach to simulate square cross section silicon nanowire (SNW) MOSFETs. A three dimensional simulation of silicon nanowire MOSFET based on self consistent solution of Poisson-Schrödinger equations is implemented. The quantum mechanical transport model of this work uses the non-equilibrium Green’s function (NEGF) formalism. First, we simulate a double-gate (DG) silicon nanowire MOSFET and compare the results with those obtained from nanoMOS simulation. We understand that when the transverse dimension of a DG nanowire is reduced to a few nanometers, quantum confinement in that direction becomes important and 3D Schrödinger equation must be solved. Second, we simulate gate-all-around (GAA) silicon nanowire MOSFETs with different shapes of gate. We have investigated GAA-SNW-MOSFET with an octagonal gate around the wire and found out it is more suitable than a conventional GAA MOSFET for its more I on/I off, less Drain-Induced-Barrier-Lowering (DIBL) and less subthreshold slope.
Shrinking gate length in conventional MOSFETs leads to increasing short channel effects like source-to-drain (SD) tunneling. Compact modeling designers are challenged to model these quantum mechanical effects. The complexity lies in the set-up between time efficiency, physical model relation and analytical equations. Multi-scale simulation bridges the gap between compact models, its fast and efficient calculation of the device terminal voltages, and numerical device models which consider the effects of nanoscale devices. These numerical models iterate between Poisson- and Schroedinger equation which significantly slows down the simulation performance. The physicsbased consideration of quantum effects like the SD tunneling makes the non-equilibrium Green’s function (NEGF) to a stateof-the-art method for the simulation of devices in the sub 10 nm region. This work introduces a semi-analytical NEGF model for ultra-short DG MOSFETs. Applying the closed-form potential solution of a classical compact model, the model turns the NEGF from an iterative numerical solution into a straightforward calculation. The applied mathematical approximations speed up the calculation time of the 1D NEGF. The model results for the ballistic channel current in DG-MOSFETs are compared with numerical NanoMOS TCAD [1] simulation data. Shown is the accurate potential calculation as well as the good agreement of the current characteristic for temperatures down to 75 K for channel lengths from 6 nm to 20 nm and channel thickness from 1.5 nm to 3 nm.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.