Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 383

Liczba wyników na stronie
first rewind previous Strona / 20 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 20 next fast forward last
PL
Powierzchnie śrubowe o zmiennym skoku występujące w opisie maszyn są geometrycznie skomplikowanymi elementami, których obróbka wymaga stosowania zaawansowanych metod programowania ruchu narzędzia. Charakterystyczny kształt i sposób opisu powierzchni śrubowych umożliwia określenie metod specjalizowanych, których użycie znacznie skraca czas generowania trajektorii narzędzia i samej obróbki powierzchni. W pracy przedstawiono wyniki analizy metod programowania ruchu narzędzia pod względem przydatności do obróbki powierzchni śrubowych o zmiennym skoku. Skoncentrowano się na zagadnieniach geometrycznych obróbki zgrubnej i dokładnej. Uznano, że do obróbki zgrubnej najkorzystniejsze jest frezowanie czołowe i powierzchnią boczną frezów palcowych o zakończeniu płaskim lub toroidalnym na obrabiarkach 5- i 6-osiowych. Efektywna obróbka dokładna wymaga 5-osiowego frezowania narzędziami o zakończeniu toroidalnym lub płaskim, a w sytuacji trudnego dostępu również niewielkimi frezami kulistymi. Ten ostatni mało efektywny sposób obróbki powinien być stosowany tylko wtedy, gdy fragment powierzchni nie może być obrobiony innymi metodami. Szlifowanie narzędziami kształtowymi jest typową efektywną metodą obróbki stosowaną powszechnie dla powierzchni śrubowych o stałym skoku. W pracy zaproponowano metody programowania ruchu narzędzia kształtowego w przypadku zmiennego skoku. Przedstawiony model analizy zależności geometrycznych między narzędziem kształtowym a powierzchnią pozwala na wygodne programowanie obróbki 4- i 5-osiowej oraz czytelną analizę jej efektywności. Metody obróbki dobrano stosownie do charakteru powierzchni tak, aby zapewnić efektywność obróbki. Dla każdej z nich określono parametry definiujące ruch narzędzia pozwalające na wygodne programowanie obróbki. Rozważania geometryczne uzupełniono określaniem wymagań dla specjalizowanego systemu CAD/CAM, który umożliwia szybkie definiowanie kształtu i generowanie efektywnych programów obróbki powierzchni śrubowych o zmiennym skoku.
EN
Helical variable pitch surfaces which occur in machine part description are geometrically compticated, and advanced programming methods must be applied to generate a tool path trajectory. Characteristic shape and surface description permit one to specify problem oriented methods which lead to a decrease in time for preparation as well as in the machining itself. Methods useful for variable pitch helical surface machining are presented and geometric problems of rough and final machining are analyzed. It was proved that the most suitable methods for rough machining are face and side milling with a flat and toroidal end mili on 4 and 5 and machines. Five axis face and side machining with flat or toroidal end mill are effective for final machining, while non effective ball end tool machining must be used only if other methods cannot be applied. Grinding with a profile tool is the most common method used for a constant pitch helical surface. Programming methods for variable pitch surface machining with a profile tool are proposed. The proposed model for analyzing the geometric dependencies between the profiletool and the surface permits the programming and analysis of the effectiveness of the 4 and 5 axis movement of the profile tool. Machining methods were chosen depending on surface curvature features in order to obtain high efficiency. For convenient programming tool trajectory definition parameters for each method were carefully chosen. The proposed solutions permit to design specialized CAD/CAM system for rapid surface definition and tool path generation for variable pitch helical surfaces.
EN
Slide ways are presented as a crucial component affecting machining accuracy. The design requirements imposed on the guide joints are discussed. The effect of contact deformability and inherent deformations of particular components of the slide way system on non-uniformity of contact pressure at the slide ways and on displacements of the guide is analyzed in detail. It is shown that the relevant design procedure should account for inherent deformations of components as well as local deformations of contact zones and of screw joints of guiding fences.
EN
The paper describes the design and results of operating measurements of the GMC-1000 and GMC- 2000 Mine Cooling Units. The first part describes the design of the cooling unit and its key components: the chiller, evaporator, condenser, oil cooler, evaporative water cooler and gallery air cooler. The possibilities of use in central air conditioning systems of underground mines are described. The second part discusses the results of the workstation and operating measurements and determines the coefficients for evaluating the performance of the mine cooling unit.
PL
Wraz ze wzrostem głębokości eksploatacji pogarszają się warunki pracy w wyrobiskach podziemnych, a w szczególności warunki klimatyczne związane ze wzrostem temperatury. Przy temperaturach pierwotnych górotworu przekraczających 40°C utrzymanie temperatury w wyrobiskach eksploatacyjnych poniżej wartości 28°C, uznawanej za wartość dopuszczalną ze względu na warunki pracy załogi, wymaga, oprócz zwiększonej wydajności wentylacji wyrobisk, także ich klimatyzacji. Można znaleźć wiele prac dotyczących tych zagadnień. Problemów klimatyzacji i chłodzenia wyrobisk dotyczą między innymi prace: Filka i jego zespołu (1999, 2002, 2004, 2006), Łuska i Nawrata (2002), Kalukiewicza i jego zespołu (2008). W krajowym górnictwie dotyczy to zarówno kopalń węgla kamiennego, jak też rud miedzi. W większości przypadków konieczność utrzymania wymaganych warunków klimatycznych w rejonie, przy jednoczesnym nacisku na ekonomiczną stronę procesu pozyskiwania kopalin, powodują konieczność stosowania klimatyzacji grupowej przy zastosowaniu urządzeń o dużej wydajności zlokalizowanych na dole kopalni. W niniejszym artykule omówiono wybrane zagadnienia doboru urządzeń klimatyzacji grupowej na przykładzie urządzenia chłodniczego GMC-1000 i GMC-2000. Konstrukcję urządzenia opracowano w firmie EUROTECH Sp. z o.o. przy współpracy z pracownikami Katedr Maszyn Górniczych Przeróbczych i Transportowych oraz Systemów Energetycznych i Urządzeń Ochrony Środowiska Wydziału Inżynierii Mechanicznej i Robotyki Akademii Górniczo-Hutniczej w Krakowie w ramach projektu dofinansowanego przez Ministerstwo Nauki i Szkolnictwa Wyższego. Górnicze urządzenie chłodnicze jest przeznaczone do chłodzenia powietrza wentylacyjnego w chodnikach wydobywczych kopani podziemnych. Znajduje zastosowanie wszędzie tam, gdzie panują trudne warunki wydobywcze powodowane między innymi dużymi obciążeniami cieplnymi. Wysokie temperatury utrudniają prace górnicze. Powodują konieczność skrócenia czasu przebywania pracowników w rejonach o najwyższych temperaturach. W połączeniu z zapyleniem i wilgotnością stanowią istotny problem przy eksploatacji maszyn i urządzeń ścianowych. Agresywna atmosfera powoduje znacznie szybsze zużycie sprzętu. Problemy te uzasadniają konieczność stosowania systemów chłodzenia powietrza bezpośrednio w rejonach, w których prowadzone jest wydobycie. Górnicze urządzenie chłodnicze GMC stanowi kompletny system chłodzenia powietrza wentylacyjnego w chodnikach wydobywczych. Realizowane zadania powodują, że system ten musi być rozbudowany pod względem technicznym jak również przestrzennym. Część zadań stawianych przed urządzeniem chłodniczym jest realizowana w znacznej odległości od chodników wydobywczych. Dotyczy to przygotowania wody chłodzącej, która służy do schładzania powietrza w chłodnicach ścianowych. Woda z rejonu jej schładzania przepływa rurociągami do rejonów wydobywczych, gdzie jest wykorzystywana do chłodzenia powietrza. Urządzenie pracuje w układzie zamkniętym. Należy zwrócić uwagę, że system chłodzenia musi spełniać wszystkie wymagania określone przez odpowiednie przepisy górnicze dotyczące zasad eksploatacji i bezpieczeństwa. Podstawowymi elementami górniczego urządzenia chłodniczego są następujące aparaty (rys. 1): agregat chłodniczy, chłodnica wyparna wody, chłodnica chodnikowa powietrza. Wymienione aparaty są urządzeniami, w których następują przepływy ciepła. Mają one różny charakter w zależności od przeznaczenia danego elementu. Urządzenie chłodnicze jest uzupełnione dodatkowymi elementami, które są niezbędne do jego prawidłowego funkcjonowania. Do grupy tej należą maszyny z układami napędowymi wymuszające przepływy czynników w poszczególnych wymiennikach ciepła. Mamy tutaj wentylatory i sprężarki czynników gazowych oraz pompy do wody jak również cieczy technologicznych. Urządzenie chłodnicze musi być wyposażone w dodatkowy sprzęt i aparaturę kontrolno-pomiarową. Konieczne są filtry do gazu i cieczy. Czujniki przepływu, temperatury i ciśnienia. Schemat górniczego urządzenia chłodniczego z opisem poszczególnych elementów jest pokazany na rysunku 1. W ramach projektu celowego nr 6 ZR8 2007C/06934 wykonane zostało Górnicze Urządzenie Chłodnicze przeznaczone do klimatyzacji grupowej (centralnej) w kopalniach podziemnych. Konstrukcję urządzenia opracowano w firmie EUROTECH Sp. z o.o. przy współpracy z pracownikami Katedry Maszyn Górniczych Przeróbczych i Transportowych oraz Katedry Systemów Energetycznych i Urządzeń Ochrony Środowiska Wydziału Inżynierii Mechanicznej i Robotyki Akademii Górniczo-Hutniczej w Krakowie. Prototyp urządzenia był badany w WUCH „PZL - Dębica” S.A., następnie przeszedł próby ruchowe w O. ZG „ Rudna”. Obecnie kilka egzemplarzy górniczego urządzenia chłodniczego jest eksploatowanych w kopalniach węgla kamiennego. Prototyp urządzenia GMC-1000 miał moc chłodniczą 1000 kW, wykonano również egzemplarz GMC-2000 o mocy chłodniczej 2000 kW. W tabelach 1-3 przedstawiono wyniki pomiarów agregatu GMC-1000 przeprowadzonych na prototypie oraz wyniki uzyskane w czasie eksploatacji w Kopalni Węgla „Rydułtowy-Anna”, tabela 4 zawiera wyniki uzyskane w czasie eksploatacji urządzenia GMC-2000 w Kopalni Węgla „Bielszowice”. Urządzenie chłodnicze w kopalni „Rydułtowy- Anna” pracuje od lutego 2009. W trakcie prób, za pomocą regulatora wydajności, zmieniano wydajność sprężarki chłodniczej. Regulator wydajności zapewnia płynną regulację strumienia od 0% do 100%. Ilość sprężanych par czynnika R134a w danej chwili, a tym samym zmianę wydajności sprężarki, uzyskuje się za pomocą sterowanego hydraulicznie suwaka regulacji wydajności. Temperatura wody lodowej dopływającej do parownika (tw5) była stabilna w trakcie poszczególnych pomiarów, ale specyfika stanowiska nie pozwalała na utrzymanie stałej wartości temperatury dla kolejnych prób. Wynikał stąd rozrzut wartości tw5 w granicach 11,1°C do 17,4°C. Kolejną wielkością regulowaną była temperatura parowania to (cienienie parowania), która w trakcie pomiarów była zmieniana w granicach -1,4°C do +1,4°C. Badania eksploatacyjne miały na celu sprawdzenie przydatności agregatu do pracy w warunkach kopalnianych. Poszczególne próby były realizowane przy różnych wartościach nastaw i wielkości wejściowych układu. Brak możliwości ustalenia wartości wybranych parametrów wynikał z faktu przeprowadzania pomiarów w czasie prowadzenia prac wydobywczych w O.ZG „Rudna”. Wartości wielkości wejściowych zależały od chwilowego stanu obciążeń i warunków otoczenia. Temperatura wody lodowej dopływającej do parownika była stabilna w trakcie poszczególnych pomiarów (tylko te były przyjmowane jako reprezentatywne), ale zmieniała się ze względu na współpracę agregatu z działającymi w wyrobisku chłodnicami powietrza. Temperatura tw5 zmieniała się w granicach 12,7°C÷19,1°C. Kolejną wielkością regulowaną była temperatura parowania to (ciśnienie parowania), która w trakcie pomiarów zmieniała się w granicach -1,1°C. Uzyskane przez górniczą maszynę chłodniczą GMC-1000 i GMC-2000 wartości parametrów pracy na stanowisku badawczym i przy próbach ruchowych potwierdziły przyjęte założenia projektowe. Wartości parametrów założone na etapie projektowania zostały osiągnięte w trakcie badań stanowiskowych. Założona moc chłodnicza wynosiła 1000 kW, w czasie pomiarów udało się osiągnąć moc chłodniczą 1250 kW. Moc ta została osiągnięta przy 100% nastawie suwaka regulującego przepływ czynnika chłodniczego przez sprężarkę i spadku temperatury wody lodowej w parowniku 11,4 K. Wynik ten daje 25% zapas mocy chłodniczej względem mocy chłodniczej nominalnej, spadek temperatury wody lodowej, w tym przypadku, jest mniejszy o 15,5% w stosunku do założonego. Zapas mocy jest większy w stosunku do niedoboru spadku temperatury oznacza to, że możliwe jest osiągnięcie wymaganego spadku temperatury nawet przy mniejszych mocach chłodniczych. Stwarza to możliwość regulacji parametrów pracy urządzenia chłodniczego w szerokim zakresie. W kilku pomiarach uzyskane temperatury schłodzenia wody były korzystniejsze niż to założono na etapie projektowania GMC. Szerokie przedziały zmienności wartości parametrów stwarzają duże możliwości sterowania pracą górniczych maszyn chłodniczych GMC-1000 i GMC-2000. Osiągnięcie wymaganego stopnia schłodzenia wody lodowej pozwoli na wymagane schłodzenie powietrza w chłodnicy ścianowej. Rezultaty uzyskane w czasie prób stanowiskowych, ruchowych i eksploatacji w kopalniach pozwalają na stwierdzenie, że górnicza maszyna chłodnicza może być eksploatowana w centralnych układach klimatyzacyjnych kopalń podziemnych.
PL
W referacie przedstawiono poszerzający się zakres odpowiedzialności wytwórcy za produkt z uwzględnieniem także ochrony środowiska. Omówiono zagadnienia ochrony środowiska w carym cyklu życia produktu. Pokazano przykłady działań podejmowanych w celu ochrony środowiska w dwu przedsiębiorstwach. Wskazano na możliwości wykorzystania przykładów tych działań przez inne zakłady.
EN
A wide range of producer responsibility on environment protection is presented. The problems of environment protection in product life cycle are discussed. The example for action of environment protection in two companies are presented. Possibility of their adaptation in another companies is printed out.
first rewind previous Strona / 20 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.