Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 126

Liczba wyników na stronie
first rewind previous Strona / 7 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  biosorption
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 7 next fast forward last
EN
The !occulating activity of a bioflocculant produced by Pseudomonas aeruginosa ATCC-10145 using kaolin clay was assayed. The in!uence of carbon, nitrogen sources, pH and culture temperature on bioflocculant production was investigated. The effects of cationic compounds, bioflocculant dosage, pH and temperature on flocculating activity were also determined. Of the cations tested, Ca2+, K +, Na+, Zn2+, Mg2+ and Cu2+ improved flocculating activity whereas Fe3+ and Al3+ caused its inhibition. The highest flocculating activity was observed at pH 7.0.The bioflocculant had a good flocculating activity of 80.50% for kaolin suspension with a dosage of only 1%. The bioflocculant was heat-stable and its activity was only decreased to 60.16% after heating at 100°C for 60 min. Chemical analyses of the purified bioflocculant indicated that it was a sugar-protein derivative, composed of protein (27%, w/w) and carbohydrate (89%,w/w ) including neutral sugar, uronic acid and amino sugar as the principal constituents in the relative weight proportions of 30.6%, 2.35% and 0.78%, respectively. The elemental analysis of the bio!occulant revealed the mass proportion of C, H and N was 19.06, 3.88 and 4.32 (%), correspondingly. Fourier transform infrared analysis showed that the exopolymers consisted of carboxyl, hydroxyl, amino and sugar derivative groups. The heavy metal adsorption by the bioflocculant of Pseudomonas aeruginosa was found to be influenced by the initial metal concentration, bioflocculant concentration and pH of the biosorption solution. This study demonstrates that microbial bioflocculant has potential to be used as an alternative bioremedial tool for industrial efluents and wastewater treatments which are co-contaminated with heavy metals.
2
Content available remote Multi-cation biosorption bychlorella kessleri
100%
EN
This paper discusses the biosorption in a multi-cation system as an example of advances in the method of ions removal/binding to the biomass. Biosorption experiments were conducted on Chlorella kessleri biomass. The ions used in the experiment were Co(II), Cu(II), Mn(II) and Zn(II) and had the following configurations: binary, ternary and quaternary system. Also, the effect of the following anions Cl-, NO3-, SO42- on the biosorption process in the quaternary system (initial concentration of each ion was 0−300 mg L-1) was examined. The affinity order determined in the experiment was as follows: Cu(II)>Zn(II)>Mn(II)>Co(II). At higher concentrations of Cu(II) cations, the strong competition effect between Cu(II) cations with the remaining cations was observed. The modified Langumir competition model was proposed to support the biosorption method in the description of the experimental data of inhibited metal ions biosorption. After the influence of anions was examined, the highest total biosorption capacity was obtained for 1:1:2 system (Cl-: NO3- : SO42-).
EN
The application of raw and modified biomass to remove hydrocarbons from wastewater by adsorption is a common practice. A mathematical modeling of biosorption kinetics is a crucial step to optimize the remediation process. In the present study, kinetic studies were carried out to describe the sorption process of crude oilon waste sunflower stalk pith. To increase sorption capacity, the pith surface was modified with polydimethylsiloxane (PDMS) and hydrophobic SiO2 nanoparticles. The maximum loading of sorption for raw and hydrophobized material was 17.76 g/g and 19.62 g/g for crude oil, respectively. The system reached the equilibrium stage after 24 hours. The uptake profiles have been described by the pseudo-first order rate equation and the pseudo-second order rate equation. The calculated results were compared with experimental data and their fit was poor. To predict biosorption kinetics, a new mathematically efficient procedure based on a modified logistic equation was developed. The results indicate that the sunflower pith is an eco-friendly sorbent with significant potential for the removal of crude oil from water phase.
EN
Simultaneous adsorption of heavy metals in complex multi metal system is insuffnciently explored. This research gives results of key process parameters optimization for simultaneous removal of Cd(II), Co(II), Cr(III), Cu(II), Mn(II), Ni(II) and Pb(II) from aqueous solution (batch system). New lemon peel-based biomaterial was prepared and characterized by infrared spectroscopy with Fourier transformation (FTIR), scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS), while the quantifi cation of metals was made by atomic absorption spectrometry (AAS). Simultaneous removal of seven metals ions was favorable at pH 5 with 300 mg/50 mL solidliquid phase ratio, within 60 min at room temperature with total obtained adsorption capacity of 46.77 mg g–1. Kinetic modeling showed that pseudo-second order kinetic and Weber-Morris diffusion models best describe the adsorption mechanism of all seven heavy metals onto lemon peel.
EN
In this paper, the biosorption capacity of activated sludge sand bed was investigated for copper removal from wastewater. A sand bed consisting of three layers was used for the study: (1) filter gravel with a diameter of 2 to 3 mm, (2) a biological part inoculated with 200 ml of flocculent activated sludge with a dry weight of 5 kg/m3, (3) filter sand with a grain diameter of about 3 mm. The filter was fed with model wastewater prepared with sodium acetate, potassium nitrate, ammonium chloride, and potassium dihydrogen phosphate I and II basic. The source of Cu ions in the wastewater was CuSO4. The model wastewater used in this study was collected every 24 hours. The experiment was terminated when the concentration of Cu in the treated wastewater sample was equal to that in the treated wastewater. Such a phenomenon was indicative of the depletion of the sorption capacity of the tested bed, which was observed after 26 days. The concentration of copper in raw and effluent from the bed was studied using atomic absorption spectroscopy (ASA) in samples mineralized in nitric acid (HNO3) with the addition of perhydrol (H2O2). Two equilibrium models, Langmuir and Freudlich, were analyzed to study the absorption isotherms.
EN
The removal of hexavalent chromium from aqueous solution was carried out in batch experiments using dead and living biomass of Aspergillus niger. The effects of the operating parameters such as influent Cr(VI) concentration, influent pH and biomass concentration on the Cr(VI) reduction were investigated. The results indicates that the removal rate of Cr(VI) increased with a decrease in pH or with increase of Cr(VI) and biomass concentrations. For chromium bioaccumulation along with nutrients the process is the most intensive within the first 5 days of mycelium formation. For biosorption, the greatest binding of this metal is achieved within the first 4 days of the process.
EN
The objective of this research was to evaluate the adsorption capacity of the shell biomass (Dioscorea rotundata), taking into account the impact of temperature, bed height, and particle size on the removal of nickel(II) ions in aqueous solution in a continuous fixed-bed column system; performing the modelling of the break curve. The biomass was characterised by SEM-EDS analysis. The analysis found that it represents a rough, heterogeneous structure, rich in carbon and oxygen, with mesopores, and is suitable for removing heavy metals. It also determined the optimum parameters of the bed height, particle size, and temperature, keeping the pH and the initial concentration of the solution constant. The results revealed that the bed height and the particle size are the two most influential variables in the process. Ni(II) removal efficiencies range between 85.8 and 98.43%. It was found that the optimal conditions to maximise the efficiency of the process are temperature of 70°C, 1.22 mm particle size, and 124 mm bed height. The break curve was evaluated by fitting the experimental data to the Thomas, Adams-Bohart, Dose-Response, and Yoon-Nelson models, with the Dose-Response model showing the best affinity with a coefficient of determination R2 of 0.9996. The results obtained in this research showed that yam shell could be suggested as an alternative for use in the removal of Ni(II) ions present in an aqueous solution in a continuous system.
EN
The biosorption of Pb(II), Zn(II) and Ni(II) from industrial wastewater using Stenotrophomonas maltophilia and Bacillus subtilis was investigated under various experimental conditions regarding pH, metal concentration and contact time. The optimum pH values for the biosorption of the three metals were in the range 5.0-6.0, while the optimal contact time for the two bacterial species was 30 min. Experimental data was analyzed using Langmuir and Freundlich isotherms; the former had a better fit for the biosorption of Pb(II), Zn(II) and Ni(II). The maximum adsorption uptakes (qmax) of the three metals calculated from the Langmuir biosorption equation for S. maltophilia were 133.3, 47.8 and 54.3 for Pb(II), Zn(II) and Ni(II), respectively, and for B. subtilis were 166.7, 49.7 and 57.8 mg/g, respectively. B. subtilis biomass was more favorable for the biosorption of Pb (II) and Ni (II), while S. maltophilia was more useful for the biosorption of Zn (II).
9
Content available remote Supporting the process of removing humic substances on activated carbon
100%
EN
This study is focused on biosorption process used in water treatment. The process has a number of advantages and a lot of research has been done into its intensification by means of ultrasonic modification of solutions. The study carried out by the authors leads to the conclusion that sonication of organic solutions allows for extension of the time of operation of carbon beds. For the analysis of the results obtained during the sorption of humic substances (HS) from the solution dependencies UV/UV0 or DOC/DOC0 were used. In comparative studies the effectiveness of sorption and sonosorption (UV/UV0) shows that the share of ultrasounds (US) is beneficial for extension of time deposit, both at a flow rate HS solution equal to 1 m/h and 5 m/h. Analysis of the US impact sorption on HS sorption in a biological fluidized bed, both prepared from biopreparat and the activated sludge confirms the higher efficiency compared to sonobiosorption than biosorption. These results confirm the degree of reduction UV254/UV0 and DOC/DOC0 for the same processes. EMS index also confirms the improvement of HSbiodegradation by sludge microorganisms.
10
Content available remote Biosorption of cationic dyes from aqueous solutions with maple leaves
100%
EN
Removal of cationic dyes, methylene blue and rhodamine B from aqueous solutions with biomass of maple leaves was investigated. Several commonly used isotherms were chosen to analyze the experimental results. Comparison of linear and non-linear methods of estimating the isotherm parameters was examined. Results show that the non-linear regression is more suitable method to determine isotherm parameters. The Redlich-Peterson model provides the best correlation with experimental data. Factors affecting biosorption such as contact time, pH, ionic strength and temperature were also evaluated.
PL
Sprawdzono skuteczność zastosowania liści klonu zwyczajnego w procesie usuwania barwników kationowych - błękitu metylenowego i rodaminy B, z roztworów wodnych. Wyniki eksperymentu opisano za pomocą kilku znanych izoterm. Parametry izoterm wyznaczono za pomocą regresji nieliniowej, wyniki porównano z danymi otrzymanymi z zastosowaniem regresji liniowej. Metoda regresji nieliniowej okazała się właściwsza w doborze parametrów izoterm. Punkty eksperymentalne najlepiej opisywał model Redlicha-Petersona. Sprawdzono wpływ parametrów procesowych, takich jak czas, pH, siła jonowa i temperatura na skuteczność biosorpcji.
11
100%
EN
Biosorption of Cu2+ ions from aqueous solutions with maple leaves biomass was investigated in function of initial pH, biomass concentration and temperature. The kinetics of biosorption was examined for various initial concentrations of Cu2+ (20, 50, 100 mg/dm3). Seven different isotherms were used to describe equilibrium data. Kinetic parameters were determined using four different kinetic equations. The desorption study of Cu2+ from biosorbent surface was carried out with four eluents.
PL
Przedstawiono wyniki badań procesu biosorpcji jonów Cu2+ z roztworów wodnych z użyciem liści klonu jako sorbentu. Zbadano wpływ początkowego pH roztworu, temperatury, ilości użytej biomasy oraz początkowego stężenia jonów miedzi [20, 50, 100 mg/dm3] na przebieg procesu. Porównano siedem izoterm opisujących równowagę procesu, a parametry kinetyczne określono za pomocą czterech różnych równań kinetycznych. Do badania desorpcji Cu2+ z powierzchni biosorbentu użyto czterech różnych eluentów.
EN
This study concerns the removal of the 137Cs+ and 60Co2+ β+γ-radioactive ions in Azolla caroliniana Willd. water fern. The living fern and two different types of biosorbent prepared from Azolla caroliniana were tested to remove the above-mentioned radioactive ions from dilute solutions, in the absence and in the presence of the ionic competition. Effective 137Cs+ and 60Co2+ ions removal from low radioactive wastewaters was demonstrated. The time dependent K d(t) values were calculated from the absorption data. These results indicate that removal process achieved equilibrium in about 120 min and that it involves two steps: rapid and slow absorption; the active process (metabolic bioaccumulation on the living fern) was responsible for above one half of the total removal process. A thin layer radiochromatography study leads to the conclusion that the biochemical components in which 137Cs+ and 60Co2+ place themselves are of a polysaccharide and lipoid fractions.
EN
The use of guava seeds (GS) and acid-modified guava seeds (MGS) for the removal of Cr(VI) from aqueous solutions was investigated. Batch-type experiments were performed with Cr(VI) aqueous solutions and biosorbents to determine the kinetic and equilibrium sorption parameters. Results indicated that GS and MGS were capable of reducing and remove Cr(VI) from solutions, but the reduction was only observed at some experimental conditions. Infrared analysis showed that several functional groups were involved in the reduction, and biosorption of Cr(VI), particularly alcohol, phenolic, carboxylic, and methoxymethyl structures. The mechanisms of reduction and biosorption depended upon the type of biosorbent, pH, and temperature of the system. The pseudo-second-order kinetic model describes the kinetic sorption data, and the Langmuir-Freundlich (L-F) model describes the isotherm data in most cases. Significantly high total chromium biosorption capacities were obtained. Acid modification of guava seeds improves chromium biosorption performance.
EN
The biosorption of Pb(II), Zn(II) and Ni(II) from industrial wastewater using Stenotrophomonas maltophilia and Bacillus subtilis was investigated under various experimental conditions regarding pH, metal concentration and contact time. The optimum pH values for the biosorption of the three metals were in the range 5.0-6.0, while the optimal contact time for the two bacterial species was 30 min. Experimental data was analyzed using Langmuir and Freundlich isotherms; the former had a better fit for the biosorption of Pb(II), Zn(II) and Ni(II). The maximum adsorption uptakes (qmax) of the three metals calculated from the Langmuir biosorption equation for S. maltophilia were 133.3, 47.8 and 54.3 for Pb(II), Zn(II) and Ni(II), respectively, and for B. subtilis were 166.7, 49.7 and 57.8 mg/g, respectively. B. subtilis biomass was more favorable for the biosorption of Pb (II) and Ni (II), while S. maltophilia was more useful for the biosorption of Zn (II).
EN
Effect of the application of blackcurrant seed post-extraction residues (BS) enriched via biosorption with Zn(II), Mn(II) and Cu(II) was examined in field tests on maize. As a nominal dose (100%), 2.5 kg of zinc, 1 kg of manganese and 0.5 kg of copper per hectare, were applied. The preparation was applied, also, in higher doses (150%, 200%). Crop yield and quality were assessed and multielemental analysis of grains was conducted. Grain yield obtained for maize treated with different doses of micronutrients (7.3 and 7.2 Mg ha-1 for BS 100% and BS 200%, respectively) was higher than in control group (6.2 Mg ha-1) and similar to a commercial reference product (7.1 Mg ha-1). Bioavailability of micronutrients from BS was shown to be higher than from reference commercial fertilizer. The highest content of micronutrients delivered to plants was observed for groups fertilized with BS in nominal dose of micronutrients (1.79, 7.08 and 28.55 mg kg-1 for Cu, Mn and Zn, respectively). The content of each micronutrient was 5.6% (Cu) 12.1% (Mn) and 12.6% (Zn) higher than in untreated group and 8.9% (Cu) 9.7% (Mn) and 8.7% (Zn) higher than commercial reference micronutrient fertilizer. New biocomponents are cheap and biodegradable carriers of nutrients which can be released in controlled way.
16
88%
EN
The aim of the study was to perform feeding experiments on growing pigs in order to assess the impact of macroalga Enteromorpha sp. enriched with Zn(II) and Cu(II) ions via the biosorption process on the mineral composition of blood, meat, liver, feces and urine. In the control group, microelements were supplemented as inorganic salts, whereas in the experimental groups they were replaced by enriched macroalga. After 3 months of the feeding experiment, it was found that the meat was biofortified with Cr, Mn, Fe, Cu and Zn. The average content of Zn in the blood from the pigs fed with algae was higher by 9.5%, compared to that in the blood from pigs in the control group. The liver of growing pigs from the experimental group contained 16% less Cu and 18% less Zn than the liver in the control group. Growing pigs fed with macroalgae excreted in feces 27% more Zn than growing pigs in the control group, but 3.5 times less Cu. It could be concluded that the bioavailability of microelements to pigs from algae was higher than from the inorganic salts. Baltic macroalgae enriched with microelement ions could be potentially used as a biological feed additive.
17
88%
EN
This study was undertaken to determine mineral content, amino acid and fatty acid composition of the freshwater macroalga – Cladophora glomerata. The studies were based on the content comparison in algal biomass collected from a lake and cultured in a laboratory. To determine the ability of copper cumulating by macroalgae, Cladophora was cultured in the medium supplemented with Cu ions. This study indicated that the relative abundance of metals in filaments decreased in the following order: Ca > K > Mg > Na > Fe > Cu > Zn > Pb > As > Ni > Cd > Mn > Cr > Co. Total protein content ranged from 14.45% in Cladophora from a lake to 26.55% in Cladophora from a laboratory. The main amino acids analyzed were aspartic and glutamic acid. The fatty acid content in the dry matter of the extract varied depending on the extraction method used: ethylene alcohol (19.0%), acetone (34.5%) or supercritical fluid extraction (62.5%). Freshwater C. glomerata due to the macrominerals, trace elements, amino and fatty acids composition in the extracts can be a valuable resource for nutritional and cosmetic applications.
EN
The paper projects the potential of agricultural waste Saraca indica leaf powder (SILP) in biosorbing chromium from aqueous system. The influence of pH, contact time, metal concentration, biomass dosage and particle size on the selectivity of the removal process was investigated. The maximum sorption efficiency of SILP for Cr(III): 85.23% and Cr(VI): 89.67% was found to be pH dependent giving optimum sorption at pH 6.5 and 2.5 respectively. The adsorption process fitted well to both Freundlich and Langmuir isotherms. Morphological changes observed in Scanning Electron Micrographs of metal treated biomass confirm the existence of biosorption phenomenon. Fourier Transform Infra-red Spectrometry confirms that amino acid-Cr interactions contribute a significant role in the biosorption of chromium using target leaf powder. The successful applications of easily abundant agricultural waste SILP, as a biosorbent have potential for a low technological pretreatment step, prior to economically not viable high-tech chemical treatments for the removal of Cr from water bodies.
EN
This article presents the feasibility for the removal of Aniline Blue dye (AB dye) from aqueous solution using a low cost biosorbent material Zizyphus oenoplia seeds. In this study, a batch mode experiments of the adsorption process were carried out as a function of pH, contact time, concentration of dye, adsorbent dosage and temperature. The experimental data were fitted with Freundlich and Langmuir isotherm equations. The feasibility of the isotherm was evaluated with dimensionless separation factor (RL). The kinetic data of sorption process are evaluated by using pseudo-first order and pseudo-second order equations. The mode of diffusion process was evaluated with intra-particle diffusion model. The thermodynamic parameters like change in enthalpy (ΔHº); change in entropy (ΔSº) and Gibbs free energy change (ΔGº) were calculated using Van’t Hoff plot. The biosorbent material was characterized with Fourier Transform Infrared (FTIR) spectroscopy and the morphology was identified with Scanning Electron Microscope (SEM) in before and after adsorption of AB dye.
EN
The development of economic and efficient processes for the removal of toxic metals from water bodies has become a priority task for environmentalists. Biosorption processes arc tangible alternatives to traditional methodologies, particularly if low metal concentration, large volume and cost arc considered. The present communication reports the unexploited sorption properties of the Saraca indica leaf powder (S1LP) for the removal of Cd(ll) and Ni(II) from aqueous media. Sorption studies using standard practices were carried out in batch experiments as a function of biomass dosage, metal concentration, contact time, particle size and pH. Sorption studies result into the standardization of optimum conditions for the removal of Cd(II) - 92.60% and Ni(II) - 46.20% as follows: biomass dosage (4.0 g), metal concentration (Cd(II) 10 ug/cm3, Ni(II) 10 ug/cm3) and volume of the test solution (200 cm3) at pH 6.5 for Cd(II) and Ni(II). The present study explores for the first time, the efficacy of Saraca indica leaf powder as a novel and environment friendly possibility to remediate heavy metal contaminated water in a cost efficient manner.
first rewind previous Strona / 7 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.