THE DIMENSION OF A QUASI-HEREDITARY ALGEBRA

VLASTIMIL DLAB

Department of Mathematics, Carleton University
Ottawa, Canada

CLAUSS MICHAEL RINGEL

Fakultät für Mathematik, Universität Bielefeld
Bielefeld, F.R.G.

Quasi-hereditary algebras have been introduced by L. Scott [S] in order to study highest weight categories as they arise in the representation theory of complex Lie algebras and algebraic groups. They have been studied by Cline, Parshall and Scott [CPS], [PS], and in [DR1], [DR2]. Here, we are going to give lower and upper bounds for the dimension of a quasi-hereditary algebra in terms of its species, and we characterize those algebras where one of these bounds is attained: we call them the shallow and the deep quasi-hereditary algebras, respectively.

1. Definitions and results

Let A be a basic semiprimary ring with radical N, let e_1, \ldots , e_n be a complete set of orthogonal primitive idempotents. The simple right A-module which is not annihilated by e_i will be denoted by $E(i)$, its projective cover by $P(i) = P_A(i)$. The simple left A-module not annihilated by e_i is denoted by $E^*(i)$. The species of A is, by definition, $\mathcal{S} = \mathcal{S}(A) = (F_i, \{M_i\})_{1 \leq i, j \leq n}$, where $F_i = e_iAe_i/e_iNe_i$, and $M_j = e_iNe_j/e_iN^2e_j$. In our considerations, the total ordering of the index set $\{1, \ldots , n\}$ of the species will usually be of importance, and in order to stress this, we will speak of a labelled species.

We recall that an ideal J of A is called a heredity ideal provided $J^2 = J$, $JNJ = 0$, and the right module J_A (or, equivalently, the left module $_AJ$) is

This paper is in final form and no version of it will be submitted for publication elsewhere.
projective. And \(A \) is said to be quasi-hereditary provided there exists a chain \(\mathcal{J} = (J_j)_j \) of ideals

\[
0 = J_0 \subset J_1 \subset \ldots \subset J_m = A
\]
such that \(J_{i}/J_{i-1} \) is a heredity ideal of \(A/J_{i-1} \), such a chain will be called a heredity chain of \(A \). Observe that any heredity ideal \(J \) is generated (as an ideal) by an idempotent, and if \(e \) is any idempotent in \(J \), then the ideal \(\langle e \rangle \) generated by \(e \) is a heredity ideal of \(A \), and \(J/\langle e \rangle \) is a heredity ideal of \(A/\langle e \rangle \). It follows that we can refine any heredity chain of \(A \) to a heredity chain \(\mathcal{J} \) such that, in addition, \(J_{i}/J_{i-1} \) is generated by a primitive idempotent, and we call such a heredity chain a saturated one. So, let \(\mathcal{J} \) be a saturated heredity chain of \(A \), and we always assume that the idempotents \(e_i \) are chosen in such a way that \(J_i = \langle e_{n-i+1} + \ldots + e_n \rangle \), for \(0 \leq i \leq n \). In this way, the quasi-hereditary algebra \(A \) together with the fixed saturated heredity chain determines uniquely \(\mathcal{S}(A) \) as a labelled species. Note that \(\mathcal{S}(A) \) is a species without loops.

Assume that \(A \) is quasi-hereditary, with heredity chain \(\mathcal{J} = (J_i)_i \), where \(J_i = \langle e_{n-i+1} + \ldots + e_n \rangle \). Let \(A_i = A/J_{i-1} \). Note that \(E(i) \) and \(E^*(i) \) are \(A_i \)-modules, and we denote their \(A_i \)-projective covers by \(\Delta(i) = A_i^*(i) \) and \(\Delta^*(i) = A_i^*(i) \), respectively. Since we deal with a quasi-hereditary algebra, it follows that \(J_{i}/J_{i-1} \), as a right \(A \)-module, is the direct sum of copies of \(A(n-i+1) \) (so the modules \(A(i) \) are just those modules which occur as building blocks in the standard filtrations of the projective right \(A \)-modules: the "Verma modules", or "induced modules"). Similarly, \(J_{i}/J_{i-1} \) is, as left \(A \)-module, the direct sum of copies \(A^*(n-i+1) \).

By definition, both \(A(i) \) and \(A^*(i) \) are local \(A \)-modules. In case all the modules \(A(i) \) and \(A^*(i) \), with \(1 \leq i \leq n \), have Loewy length at most 2, we call \(A \) shallow. Thus, \(A \) is shallow if and only if all the modules \(\text{rad} A(i) \) and \(\text{rad} A^*(i) \) are semisimple. Observe that these modules are actually \(A_{i-1} \)-modules, and we call \(A \) deep provided \(\text{rad} A(i) \) is a projective right \(A_{i-1} \)-module and \(\text{rad} A^*(i) \) is a projective left \(A_{i-1} \)-module, for all \(1 \leq i \leq n \).

Now, conversely, let \(\mathcal{S} \) be a labelled species without loops, say \(\mathcal{S} = (F_{i}, M_{i})_{i,j \leq n} \), with \(M_{i} = 0 \) for all \(i \). The tensor algebra \(\mathcal{T}(\mathcal{S}) \) can be decomposed as follows. Let \(T = T(n) \) be the set of all sequences \((t_0, t_1, \ldots, t_m)\) where the \(t_i \) are integers with \(1 \leq t_i \leq n \), and \(m \geq 1 \), such that, moreover, \(t_{i-1} \neq t_i \) for \(1 \leq i \leq m \). For \(t = (t_0, t_1, \ldots, t_m) \in T \), let

\[
M(t) = M_{t_0} \otimes_{F_{t_1}} M_{t_1} \otimes_{F_{t_2}} \ldots \otimes_{F_{t_{m-1}}} M_{t_{m}},
\]

and for \(T' \subseteq T \), let

\[
M(T') = \bigoplus_{t \in T'} M(t).
\]

Let \(\mathcal{S}_0(\mathcal{S}) = \prod_{i=1}^{n} F_i \) and \(\mathcal{S}_+(\mathcal{S}) = M(T) \), thus \(\mathcal{S}(\mathcal{S}) = \mathcal{S}_0(\mathcal{S}) \oplus \mathcal{S}_+(\mathcal{S}) \).
We are going to define two factor algebras of $\mathcal{F}(\mathcal{P})$ which will turn out to be quasi-hereditary. Both algebras will be of the form $\mathcal{F}(\mathcal{P})/M(T')$ for suitable choices of T'. In order to define the first one, we define complementary subsets U, U^0 of T as follows: Let

$$U = U(n) = \{(t_0, t_1) \in T\} \cup \{(t_0, t_1, t_2) \in T | t_0 < t_1 > t_2\},$$

thus

$$U^0 = \mathcal{F} \setminus U = \{(t_0, t_1, \ldots, t_m) \in T | \text{there is } 0 < i < m \text{ with } t_i < \max(t_{i-1}, t_{i+1})\}.$$

Obviously, $M(U^0)$ is an ideal of $\mathcal{F}(\mathcal{P})$, and

$$(\mathcal{F}_*(\mathcal{P}))^3 \subseteq M(U^0) \subseteq (\mathcal{F}_*(\mathcal{P}))^2,$$

thus $M(U^0)$ is an admissible ideal. We define $S(\mathcal{P}) = T(\mathcal{P})/M(U^0)$. Note that as abelian groups, we can identify $S(\mathcal{P})$ and $\mathcal{R}_0(\mathcal{P}) \oplus M(U)$.

For the second algebra, we define complementary subsets V, V^0 of T as follows: Let

$$V = V(n) = \{(t_0, \ldots, t_m) \in T | \text{given } i < j \text{ with } t_i = t_j, \text{ there exists } l \text{ with } i < l < j \text{ and } t_i < t_l\},$$

$$V^0 = T \setminus V = \{(t_0, \ldots, t_m) \in T | \text{there are } i < j \text{ with } t_i = t_j \text{ and } t_i < t_l \text{ for all } i < l < j\}.$$

As usual, we may consider a product on T by using the juxtaposition, thus

$$(t_0, \ldots, t_m) \cdot (t'_0, \ldots, t'_m) = (t_0, \ldots, t_m, t'_0, \ldots, t'_m).$$

Of course, for subsets T', T'' of T, we define $T' \cdot T'' = \{t' \cdot t'' | t' \in T', t'' \in T'' \text{ and } t' \cdot t'' \in T\}$ and so on. Then, obviously, for $n \geq 2$

$$V(n) = V(n-1) \cup V(n-1) \cdot n \cdot V(n-1) \cup V(n-1) \cdot n \cdot V(n-1).$$

By induction on n, we see that $V(n)$ is finite. In particular, the sequences $(t_0, \ldots, t_m) \in V(n)$ are of bounded length, say $m \leq v(n)$ for some $v(n)$. Thus

$$(\mathcal{F}_*(\mathcal{P}))^{v(n)+1} \subseteq M(V^0) \subseteq (\mathcal{F}_*(\mathcal{P}))^2,$$

so that $M(V^0)$ is an admissible ideal. We define $D(\mathcal{P}) = \mathcal{F}(\mathcal{P})/M(V^0)$, and note that $D(\mathcal{P})$ can be identified, as an abelian group, with $\mathcal{R}_0(\mathcal{P}) \oplus M(V)$.

Theorem 1. Let \mathcal{P} be a labelled species without loops. The rings $S(\mathcal{P})$ and $D(\mathcal{P})$ are quasi-hereditary, with labelled species \mathcal{P}. The ring $S(\mathcal{P})$ is shallow, the ring $D(\mathcal{P})$ is deep.

In particular, we see that the nonexistence of loops is the only condition on a species for being realizable as the species of a quasi-hereditary ring.
Let \(k \) be a (commutative) field. In case \(\mathcal{S} \) is a finite-dimensional \(k \)-species, labelled and without loops, we denote by \(s_k(\mathcal{S}) \) and \(d_k(\mathcal{S}) \) the \(k \)-dimension of \(S(\mathcal{S}) \) and \(D(\mathcal{S}) \), respectively. We are going to formulate an estimate for the Cartan invariants of a quasi-hereditary algebra \(A \) in terms of the Cartan invariants of the corresponding algebras \(S(\mathcal{S}) \) and \(D(\mathcal{S}) \). In this way, we deduce that the dimension of \(A \) is bounded from below by \(s_k(\mathcal{S}) \) and from above by \(d_k(\mathcal{S}) \).

Theorem 2. Let \(A \) be a basic, finite-dimensional \(k \)-algebra which is quasi-hereditary with labelled species \(\mathcal{S} \). Then, for any \(i, j \)

\[
\dim_k(e_i S(\mathcal{S}) e_j) \leq \dim_k(e_i A e_j) \leq \dim_k(e_i D(\mathcal{S}) e_j).
\]

In particular,

\[
s_k(\mathcal{S}) \leq \dim_k A \leq d_k(\mathcal{S}).
\]

We have \(s_k(\mathcal{S}) = \dim_k A \) if and only if \(A \) is shallow, and \(d_k(\mathcal{S}) = \dim_k A \) if and only if \(A \) is deep.

The proof of Theorem 1 is given in Section 2, the proof of Theorem 2 in Section 3. We add examples showing that besides the algebras \(S(\mathcal{S}) \) and \(D(\mathcal{S}) \), there are other shallow or deep algebras. A detailed study of the ring-theoretical and homological properties of quasi-hereditary rings which are shallow or deep will be given in a subsequent publication.

2. The rings \(S(\mathcal{S}) \) and \(D(\mathcal{S}) \)

The aim of this section is a proof of Theorem 1. Thus, let \(\mathcal{S} \) be a labelled species without loops, with index set \([1, \ldots, n]\). The proof is by induction on \(n \).

If \(n = 1 \), then \(S(\mathcal{S}) = D(\mathcal{S}) = F_1 \), thus quasi-hereditary (and trivially both shallow and deep). Thus, let \(n \geq 2 \), and let \(\mathcal{S}' \) be the restriction of \(\mathcal{S} \) to \([1, \ldots, n-1]\).

Consider first \(S(\mathcal{S}) \). Given \(m \in \mathbb{N} \), let \([1, m] = \{i \in \mathbb{N} \mid 1 \leq i \leq m\} \). Then

\[
S(\mathcal{S}) e_n = F_n \oplus M([1, n-1] \cdot n),
\]

\[
e_n S(\mathcal{S}) = F_n \oplus M(n \cdot [1, n-1]),
\]

\[
\langle e_n \rangle = F_n \oplus M(\{ t \in U \mid t_i = n \text{ for some } i \})
= F_n \oplus M([1, n-1] \cdot n \cap [1, n-1] \cup [1, n-1] \cdot n \cdot [1, n-1])
= (F_n \oplus M([1, n-1] \cdot n)) \otimes_{F_n} F_n(\mathcal{S} \cdot M([1, n-1]))
= S(\mathcal{S}) e_n \otimes_{F_n} e_n S(\mathcal{S}).
\]

In particular, \(e_n S(\mathcal{S}) e_n = F_n \), and the equalities above show that \(\langle e_n \rangle \) is a heredity ideal. Of course, \(\text{rad} \Delta(n) = M(n \cdot [1, n-1]) \) is a semisimple right
module, \(\text{rad}\ A^*(n) = M([1, n-1] \cdot n) \) is a semisimple left module. Since \(S(\mathcal{S})/\langle e_n \rangle = S(\mathcal{S}') \), we use induction and conclude that \(S(\mathcal{S}) \) is a shallow quasi-hereditary ring.

Next, we consider \(D(\mathcal{S}) \). We have
\[
D(\mathcal{S})e_n = F_n \oplus M(V(n-1) \cdot n),
\]
\[
e_n D(\mathcal{S}) = F_n \oplus M(n \cdot V(n-1)),
\]
\[
\langle e_n \rangle = F_n \oplus M(V(n-1) \cdot n \cup n \cdot V(n-1) \cup V(n-1) \cdot n \cdot V(n-1))
\]
\[
= (F_n \oplus M(V(n-1) \cdot n)) \otimes_{F_n} (F_n \oplus M(n \cdot V(n-1)))
\]
\[
= D(\mathcal{S})e_n \otimes_{F_n} e_n D(\mathcal{S}),
\]
so that \(e_n D(\mathcal{S})e_n = F_n \), and \(\langle e_n \rangle \) is a heredity ideal. Since \(D(\mathcal{S})/\langle e_n \rangle = D(\mathcal{S}') \), it follows by induction that \(D(\mathcal{S}) \) is quasi-hereditary. Now
\[
\text{rad}\ A(n) = M(n \cdot V(n-1)) = \bigoplus_{i=1}^{n-1} M_i \otimes_{F_i} P_{D(\mathcal{S})}(i),
\]
thus \(A(n) \) is a projective right \(D(\mathcal{S}') \)-module. Similarly, \(\text{rad}\ A^*(n) \) is a projective left \(D(\mathcal{S}') \)-module. By induction, it follows that \(D(\mathcal{S}) \) is deep.

3. Quasi-hereditary \(k \)-algebras

Let \(k \) be a field, and \(A \) a basic finite-dimensional quasi-hereditary \(k \)-algebra with labelled species \(\mathcal{S} \). Let \(\{1, \ldots, n\} \) be the index set of \(\mathcal{S} \). Note that \(e_n A e_n = F_n \), and, in the same way, \(e_n S(\mathcal{S}) e_n = e_n D(\mathcal{S}) e_n = F_n \). In particular, for the proof of the dimension inequalities, we may assume \(n \geq 2 \). Let \(\mathcal{S}' \) be the restriction of \(\mathcal{S} \) to \(\{1, \ldots, n-1\} \); clearly, this is the labelled species for \(B = A/\langle e_n \rangle \). By induction, we know that
\[
\dim_k(e_n S(\mathcal{S}) e_j) \leq \dim_k(e_n B e_j) \leq \dim_k(e_n D(\mathcal{S}) e_j),
\]
for all \(i, j \leq n-1 \).

First, consider \(e_n A e_j \), with \(1 \leq j \leq n-1 \). Let \(X = \bigoplus_{i=1}^{n-1} e_n A e_j \), thus \(X \) is the radical of the right \(A \)-module \(e_n A \); this is a \(B \)-module with top \(X = \bigoplus_{i=1}^{n-1} M_i \). Let \(d_i = \dim_k(M_i) \). We denote by \(P \) the \(B \)-projective cover of \(X \), thus \(P \) is the direct sum of \(d_i \) copies of \(e_i B \), for \(1 \leq i \leq n-1 \). The epimorphisms \(P \to X \to X e_j \) yield epimorphisms \(P e_j \to X e_j \to X e_j \). Now, \(X e_j = _n M_j \), \(X e_j = e_n A e_j \), and \(P e_j = \bigoplus_{i=1}^{n-1} (e_i B)e_j \), thus
\[
\dim_k(_n M_j) \leq \dim_k(e_n A e_j) \leq \sum_{i=1}^{n-1} d_i \cdot \dim_k(e_i B e_j).
\]
However, \(e_n S(\mathcal{S}) e_j = _n M_j \), so the left-hand term is the desired one. Now,
\[\text{rad}(e_n D(S)_{D(S)}) = \bigoplus_{i=1}^{n-1} (e_i D(S'))_{D(S)}^d. \]

It follows that \(e_n D(S)e_j = \bigoplus_{i=1}^{n-1} (e_i D(S')e_j)^d \), and therefore
\[\sum_{i=1}^{n-1} d_i \cdot \dim_k(e_i Be_j) \leq \sum_{i=1}^{n-1} d_i \cdot \dim_k(e_i D(S')e_j) = \dim_k(e_n D(S)e_j). \]

This finishes the proof for \(e_i Ae_j \). The dual proof yields the similar inequality for \(e_j Ae_n \), where \(1 \leq j \leq n-1 \).

It remains to consider \(e_i Ae_j \), where \(1 \leq i, j \leq n-1 \). Since \(\langle e_n \rangle = A e_n \otimes_{F_n} e_n A \), there is the exact sequence
\[0 \to e_i Ae_n \otimes_{F_n} e_n Ae_j \to e_i Ae_j \to e_i Be_j \to 0, \]
and similar ones for \(S(S) \) and \(D(S) \), namely
\[0 \to e_i S(S)e_j \to e_i S(S)e_j \to e_i S(S)e_j \to 0, \]
\[0 \to e_i D(S)e_j \to e_i D(S)e_j \to e_i D(S)e_j \to 0. \]

The desired inequalities follow from the inequalities for \(e_i Ae_n \), \(e_n Ae_j \), and \(e_i Be_j \), by taking into account that for a right \(F_n \)-space \(X \) and a left \(F_n \)-space \(Y \), we have
\[\dim_k X \otimes_{F_n} Y = \frac{1}{\dim_k F_n} \dim_k X \cdot \dim_k Y. \]

This finishes the proof of the first part of Theorem 2.

Now assume that \(A \) is shallow. By induction, we know that \(\dim_k(e_i S(S')e_j) = \dim_k(e_i Be_j) \), for \(i, j \leq n-1 \). Since \(X = X' \), we have \(e_n S(S)e_j = M_j = e_n Ae_j \), for \(j \leq n-1 \), and similarly \(e_j S(S)e_n = e_j Ae_n \) for \(j \leq n-1 \). It follows that \(\dim_k(e_i S(S)e_j) = \dim_k(e_i Ae_j) \), for all \(i, j \).

Similarly, if we assume that \(A \) is deep, then, by induction, \(\dim_k(e_i Be_j) = \dim_k(e_i D(S')e_j) \), for \(i, j \leq n-1 \). On the other hand, we have in this case \(X = P \), thus \(e_n Ae_j = \bigoplus_{i=1}^{n-1} (e_i Be_j)^d \), and therefore
\[\dim_k(e_n Ae_j) = \sum_{i=1}^{n-1} d_i \cdot \dim_k(e_i Be_j) = \sum_{i=1}^{n-1} d_i \cdot \dim_k(e_i D(S')e_j) = \dim_k(e_n D(S)e_j). \]

It follows that \(\dim_k(e_i Ae_j) = \dim_k(e_i D(S)e_j) \).

Note that \(\dim_k A = \sum_{i, j} \dim_k(e_i Ae_j) \), thus always \(s_k(S) \leq \dim_k A \leq d_k(S) \).

Let us first assume \(s_k(S) = \dim_k A \), thus \(\dim_k(e_i Ae_j) = \dim_k(e_i S(S)e_j) \), for all \(i, j \). If \(i, j \leq n-1 \), a proper inequality \(\dim_k(e_i S(S)e_j) < \dim_k(e_i Be_j) \) would yield that \(\dim_k(e_i S(S)e_j) < \dim_k(e_i Ae_j) \) for the same pair \(i, j \) of indices, since
\[\dim_k(e_i Ae_j) - \dim_k(e_i S(S)e_j) = \dim_k(e_i Be_j) - \dim_k(e_i S(S')e_j) = a, \]
with
\[a = \dim_k (e_i A e_n \otimes_{F_n} e_n A e_j) - \dim_k (e_i S(\mathcal{S}) e_n \otimes_{F_n} e_n S(\mathcal{S}) e_j) \geq 0. \]
Thus \(s_k(\mathcal{S}') = \dim_k B \), and \(B \) is shallow by induction. On the other hand, \(\dim_k (e_n S(\mathcal{S}) e_j) = \dim_k (e_n A e_j) \) implies that \(X e_j = \bar{X} e_j \), for all \(1 \leq j < n \), and therefore \(X = \bar{X} \) is semisimple. This shows that the right \(A \)-module \(e_n A \) has Loewy length at most 2. Similarly, the left \(A \)-module \(A e_n \) has Loewy length at most 2. As a consequence, \(A \) is shallow.

In the same way, we proceed in case \(\dim_k A = d_k(\mathcal{S}) \). We see immediately that \(\dim_k (e_i A e_j) = \dim_k (e_i D(\mathcal{S}) e_j) \), for all \(i, j \), and conclude that \(\dim_k B = d_k(\mathcal{S}') \). Thus \(B \) is deep by induction. On the other hand, \(\dim_k (e_n A e_j) = \dim_k (e_n D(\mathcal{S}) e_j) \) implies that \(P e_j = X e_j \), for all \(1 \leq j \leq n-1 \), and therefore \(X = P \) is a projective right \(B \)-module. Similarly, the radical of the left \(A \)-module \(A e_n \) is projective as a left \(B \)-module. Thus \(A \) is deep.

4. Examples

The bounds \(s_k(\mathcal{S}) \leq \dim_k A \leq d_k(\mathcal{S}) \) are optimal, but we should remark that usually \(d_k(\mathcal{S}) - s_k(\mathcal{S}) \) may be rather large. As an example, consider the \(k \)-species \(\mathcal{S}_n = (F, i M_j)_{1 \leq i, j \leq n} \) with \(F_i = k \) and \(i M_j = 0 \) for all \(i \), whereas \(j M_j = k \) for all \(i \neq j \); thus \(T(\mathcal{S}_n) \) is the path algebra for the quiver with \(n \) vertices, a unique arrow \(i \to j \) for \(i \neq j \), and no loops. We are going to exhibit \(s(n) := s_k(\mathcal{S}_n) \) and \(d(n) := d_k(\mathcal{S}_n) \). It suffices to calculate the cardinalities of the index sets \(U(n) \) and \(V(n) \), since
\[s(n) = n + U(n), \quad d(n) = n + V(n). \]
Clearly, \(|U(1)| = 0 = |V(1)| \). For \(n \geq 2 \), we have
\[U(n) = U(n-1) \cup [1, n-1] \cdot n \cup n \cdot [1, n-1] \cup [1, n-1] \cdot n \cdot [1, n-1], \]
thus
\[|U(n)| = |U(n-1)| + 2(n-1) + (n-1)^2 = |U(n-1)| + n^2 - 1, \]
and consequently,
\[|U(n)| = -n + \sum_{i=1}^n t^2 = -n + \frac{1}{6} n(n+1)(2n+1). \]
Similarly, from
\[V(n) = V(n-1) \cup V(n-1) \cdot n \cup n \cdot V(n-1) \cup V(n-1) \cdot n \cdot V(n-1) \]
for \(n \geq 2 \), we obtain
\[|V(n)| = 3|V(n-1)| + |V(n-1)|^2. \]
It follows that \(s(n) = \frac{1}{6} (n+1)(2n+1) \), and that \(d(n) \) is given recursively by
\(d(1) = 1 \), and \(d(n) = d(n-1) + (d(n-1) + 1)^2 \) for \(n \geq 2 \). The first values for \(s(n) \) and \(d(n) \) are the following:

\[
\begin{align*}
 s(1) &= 1, & d(1) &= 1, \\
 s(2) &= 5, & d(2) &= 5, \\
 s(3) &= 14, & d(3) &= 41, \\
 s(4) &= 30, & d(4) &= 1805, \\
 s(5) &= 55, & d(5) &= 3263441.
\end{align*}
\]

Let \(\mathcal{S} \) be a labelled species without loops. Let us assume that there are even no oriented cycles. Then \(D(\mathcal{S}) \) is the tensor algebra of \(\mathcal{S} \). In particular, if \(\mathcal{S} \) is, in addition, a finite-dimensional \(k \)-algebra where \(k \) is a perfect field, then \(D(\mathcal{S}) \) is the only deep quasi-hereditary algebra with species \(\mathcal{S} \). If the labelling is chosen in such a way that \(M_j = 0 \) for \(i > j \), then \(S(\mathcal{S}) = T(\mathcal{S}) / T_1(\mathcal{S})^2 \), so again \(S(\mathcal{S}) \) is the only shallow quasi-hereditary algebra with labelled species \(\mathcal{S} \). Of course, in general there may be shallow rings which are not of the form \(S(\mathcal{S}) \), the first example is the path algebra of the quiver of Fig. 1 with the commutativity relation.

![Fig. 1](image1)

For a labelled species \(\mathcal{S} \) without loops but with oriented cycles there usually also will exist deep rings which are not of the form \(D(\mathcal{S}) \). For example, consider the algebra \(A \) given by the quiver of Fig. 2 with relations \(\beta \alpha - \gamma \delta = 0 \)

![Fig. 2](image2)

For a labelled species \(\mathcal{S} \) without loops but with oriented cycles there usually also will exist deep rings which are not of the form \(D(\mathcal{S}) \). For example, consider the algebra \(A \) given by the quiver of Fig. 2 with relations \(\beta \alpha - \gamma \delta = 0 \)

![Fig. 3](image3)
and $\delta \gamma = 0$. The labelled species corresponding to this quiver will be denoted by \mathcal{S}. Then A is deep with labelled species \mathcal{S}, but not isomorphic to $D(\mathcal{S})$.

Also, we should remark that there are quasi-hereditary algebras A with radical N such that no ideal $I \subseteq N^2$ yields a shallow algebra A/I. A typical example is the algebra A given by the quiver of Fig. 3 with the commutativity relation. Note that A has a unique minimal nonzero ideal J. An ideal I with A/I shallow must contain J, but there is no ideal I with $J \subseteq I \subseteq N^2$ such that A/I is quasi-hereditary with respect to the given ordering of the vertices.

References