A MODEL OF HYPERBOLIC STEREOMETRY
BASED ON THE ALGEBRA OF QUATERNIONS

BY

A. SZYBIAK (RZESZÓW)

DEDICATED TO A. P. NORDEN
ON HIS 70-TH BIRTHDAY

Let \(R, C \) and \(H \) denote fields of reals, complex numbers and quaternions, respectively. We consider the multiplicative group on \(C \times H \) which acts on \(H^*_3 := H \times H \setminus \{(0, 0)\} \) by the rule

\[
(C \times H) \times H^*_3 \to H^*_3, \quad ((z, h), (x^1, x^2)) \mapsto (zx^1 h, zx^2 h).
\]

Denote by \(N \) the space of orbits of \(H^*_3 \) under this action. \(N \) is a basic space which we shall provide with a hyperbolic metric. It is known that the hyperbolic stereometry can be considered as the Riemannian geometry with the basic manifold \(H^+_3 := \{(x^1, x^2, x^3) \mid x^3 > 0\} \) and with the fundamental metric form

\[
ds^2_{(x^1, x^2, x^3)} = \frac{K^2}{(x^3)^2} ((dx^1)^2 + (dx^2)^2 + (dx^3)^2).
\]

We are going to obtain this metric and some other properties of the hyperbolic space by considering \(N \) as a base of a certain Klein space. An analogical treatment has been performed in a 2-dimensional case and resulted in a brief and consequent system of analytical geometry of the Lobachevski plane ([2], cf. also [4]).

I. THE FUNDAMENTAL GROUP

1. Proposition. The space \(N \) is a compact 3-dimensional manifold with a boundary.

Proof. Orbits of the action

\[H \times H^*_3 \to H^2 / (a, (x^1, x^2)) \mapsto (x^1 a, x^2 a)\]
are points of the projective space over H, denoted by PH (cf. [1]). This space can be covered by two charts defined by mappings

$$
\mu_1: \{x^1, x^2\} \mapsto x^1(x^2)^{-1} \quad \text{and} \quad \mu_2: \{x^1, x^3\} \mapsto x^3(x^1)^{-1},
$$

where $\{x^1, x^2\}$ denotes an image of (x^1, x^3) under the canonical projections $H^2_\mathbb{C} \to PH$. The real dimension of PH is 4. Thus N can be viewed as the space of orbits in PH under the action

$$
C \times PH \to PH / (z, \{x^1, x^2\}) \mapsto \{zx^1, zx^2\}.
$$

We have

$$
\mu_i\{zx^1, zx^2\} = z(\mu_i\{x^1, x^2\})z^{-1}, \quad i = 1, 2.
$$

We shall see what are orbits in H under the action $a \mapsto zaz^{-1}$, where $z \in C$ and $a \in H$. For that purpose write a in the form $a = a' + a''j$, where a' and a'' are complex numbers and j is the third unity in H. Note that this decomposition can be obtained as follows:

$$
(2) \quad a' = \frac{1}{2} \left(a + ia(-i) \right), \quad a'' = \frac{1}{2} \left(a - ia(-i) \right)(-j).
$$

Thus

$$
zas^{-1} = za\bar{z}|z|^{-2} = a' + \exp(i2\arg z)a''j.
$$

Since a' and $|a''|$ are invariant, we can define mappings m_1 and m_2 as follows: if $(x^1, x^2) \in H$ and $x^2 \neq 0$, then

$$
(3) \quad \mu_1\{x^1, x^2\} = x^1(x^2)^{-1} = h' + h''j, \quad \text{where} \quad h', h'' \in C.
$$

We put

$$
m_1(p(x^1, x^2)) = (\text{re} h', \text{im} h', |h''|),
$$

where p denotes the canonical projection of $H^2_\mathbb{C}$ onto N. Thus the values of m_1 lie in $\text{cl}R^3_+$. Similarly, we define

$$
m_2: \{p(x^1, x^2)|x^1 \neq 0\} \to \text{cl}R^3_+,
$$

where

$$
p(x^1, x^2) \mapsto \left(\text{re} \left(\mu_2(x^1, x^2)' \right), \text{im} \left(\mu_2(x^1, x^2)' \right), |\mu_2(x^1, x^2)'| \right),
$$

and $\mu_2(-) = \mu_2(-)' + \mu_2(-)''$ is a decomposition analogous to (3).

We see that N can be covered by two local charts, m_1 and m_2 being the corresponding mappings. The boundary of N is $\{p(x^1, x^2)|x^1(x^2)^{-1} \in C\} \cup \cup \{\infty\}$. This completes the proof.

2. Note that N is homeomorphic to a manifold the points of which are circles in the C-plane, including circles with radius equal to 0 and ∞. These singular circles constitute the boundary.
Denote by \(L \) the group of non-singular complex \(2 \times 2 \)-matrices. We map \(L \) onto a transformation group \(T \) which acts on \(N \) as follows:

(4) if \(a = [a_{k,k}, k=1,2] \in L \) and \(u = p(x^1, x^2) \in N \), then

\[\tau_a u := p(a_1^1 x^1 + a_1^2 x^2, a_2^1 x^1 + a_2^2 x^2). \]

Observe that \(\tau_u \) does not depend on the choice of the initial point \((x^1, x^2) \) on the orbit \(u \). Thus (4) defines the action correctly and we denote by \(T \) the image of \(L \) by \(\tau \).

We have \(\tau_a = \tau_b \) if and only if \(b = \lambda a \) for some \(0 \neq \lambda \in \mathbb{C} \). This implies the following

3. **Proposition.** \(T \) is isomorphic to the group of complex \(2 \times 2 \)-matrices with the determinant equal to 1. The real dimension of \(T \) is 6.

4. **Theorem.** Let \(c \) denote the point in \(N \) with the \(m_1 \)-coordinates \((0, 0, 1)\). Then a stationary subgroup \(S \subset T \) of \(c \) consists of the matrices of the form

\[
\begin{bmatrix}
 a & b \\
 -b & \bar{a}
\end{bmatrix}
\]

such that \(a\bar{a} + b\bar{b} = 1 \).

Proof. Consider the equation \((aj + b)(cj + d)^{-1} = j\) and split it into the \(' \) and \('' \) parts according to (3). We obtain \(c = -\bar{b} \) and \(d = \bar{a} \). Then we normalize the obtained matrices according to proposition 3.

Let us denote by \(\Lambda \) the closure of the set \(\{u \in N | \mu_1(u) = (0, 0, t)\} \). Denote by \(T_{\Lambda} \) the stationary group of \(\Lambda \).

5. **Theorem.** \(T_{\Lambda} \) consists of the matrices of the form

\[
\begin{bmatrix}
 a & 0 \\
 0 & 1/a
\end{bmatrix}
\text{ or } \begin{bmatrix}
 0 & a \\
 -1/a & 0
\end{bmatrix}, \text{ where } a \in \mathbb{R}.
\]

The proof is analogous to that of theorem 4.

6. **Proposition.** The group \(S \) is isomorphic to the group of rotations of the Euclidean 3-dimensional space.

This fact can be proved by checking that the Lie algebras of both groups are isomorphic.

7. **Lemma.** Let \(h = h' + h'' j \in H \) be such that \(h' \neq 0 \) and \(h'' \neq 0 \). Then there exist two complex numbers \(g_1 \) and \(g_2 \) and two complex singular matrices \(G_1 \) and \(G_2 \) such that

(i) \(|g_1| \neq 1, |g_1g_2| = 1, \) and \(\arg g_1 = \arg g_2 = \arg h' \);
(ii) each \(G_1 \) sends \(h \) to \(g_1 \) and \(j \) to itself for \(\nu = 1, 2 \).
Proof. In view of theorem 4, we have to find \(g \) and the required matrices from the equation
\[
a(h' + h''j) + b = gj(-b(h' + h''j) + \bar{u}).
\]

After performing some simple calculations and splitting both member into their ' and '' parts, we obtain the following system of equations
\[
h'a + (1 - g\bar{h}'')b = 0, \quad (h'' - g)a + g\bar{h}'b = 0.
\]

Its determinant must be 0 and for \(g \) we have the equation
\[
-\bar{h}''g^2 + (1 + \bar{h}'h' + \bar{h}''h'')g - h'' = 0
\]
which can be written in the form
\[
(\gamma + \gamma^{-1})/2 = (1 + \bar{h}'h' + \bar{h}''h'')/(2|h''|),
\]
where \(\gamma = g \exp(-i \arg h'') \). Since \(\gamma \) is real and it satisfies the equation
\[
\text{ch} \log \gamma = (1 + |h|^2)/(2|h''|),
\]
there exist two distinct roots of equation (5), namely \(g_1 = \gamma_1 e^{i\alpha} \) and \(g_2 = \gamma_2 e^{i\alpha} \), where \(\alpha = \arg h'' \). These roots yield the two matrices
\[
\begin{bmatrix}
g_1h' & g_1 - h'' \\
\bar{h}'' - \bar{g}_2 & \bar{g}_1 - h'
\end{bmatrix}
\quad (v = 1, 2)
\]
which satisfy (ii).

8. Theorem. For any two points \(u, v \in \text{int} N \), there exist two elements \(a_1 \) and \(a_2 \) in \(T \) such that each \(a_v \) sends \(u \) to \(p(j, 1) \) and \(v \) to \(p(gj, 1) \), where \(g \), are complex and \(|g_1g_2| = 1 \).

Proof. Write \(u = p(w' + w''j, 1) \). Then the matrix
\[
a_v = \begin{bmatrix}
1 & w' \\
0 & w''
\end{bmatrix}
\]
sends \(u \) to \(p(j, 1) \). We choose an \(h \) such that \(a_u v = p(h, 1) \) and apply lemma 7. This implies the existence of \(G_1 \) and \(G_2 \) which send \(a_u u \) to itself and \(a_v v \) to \(p(g_1j, 1) \) (or, respectively, to \(p(g_2j, 1) \)), where \(g_1 \) and \(g_2 \) satisfy the conditions of the theorem. Then we put \(a_1 = G_1 \circ a_v \) and \(a_2 = G_2 \circ a_v \).

9. Proposition. The stationary group of the pair \((p(j, 1), p(gj, 1)) \), where \(1 \neq g \in C \), is represented by matrices of the form
\[
\begin{bmatrix}
e^{ri} & 0 \\
0 & e^{-ri}
\end{bmatrix}.
\]
The action of this group can be expressed also by
\[p(h, 1) \mapsto p(e^{ri}h e^{-ri}, 1).\]
This proposition can be easily obtained by lemma 7. The same lemma allows us to prove the following

10. PROPOSITION. The group T acts transitively on a bundle of directions on N.

II. THE CROSS-RATIO AND THE METRIC IN N

We recall that A is the orbit of the point $p(j, 1)$ under the action of the group of matrices of the form

\[
\begin{bmatrix}
\sqrt{s} & 0 \\
0 & 1/\sqrt{s}
\end{bmatrix},
\]

where s varies in the half-line of positive numbers (cf. theorem 5). We observe that these matrices constitute a connected component of T_A. However, T_A contains another topologically connected component to which matrices of the form

\[
\begin{bmatrix}
0 & -\sqrt{s} \\
\sqrt{s} & 0
\end{bmatrix}
\]

belong. Each such matrix can be represented as a product

\[
\begin{bmatrix}
0 & -1 \\
1 & 0
\end{bmatrix} \cdot \begin{bmatrix}
\sqrt{s} & 0 \\
0 & -1/\sqrt{s}
\end{bmatrix}.
\]

An action of the first matrix of this decomposition is nothing but a change of orientation on N. More precisely, it sends $p(j, 0)$ to $p(0, j)$ and vice versa.

Then we can define the cross-ratio on intN which is invariant under T_A. We denote by $(u, v; r, q)$ the value of the cross-ratio of the quadruple (u, v, r, q). If $u = p(a_1j, 1)$, $v = p(a_2j, 1)$, $r = p(\beta_2j, 1)$ and $q = p(\beta_2j, 1)$, then we have

\[
(u, v; r, q) = \frac{a_1-\beta_1}{a_2-\beta_1} / \frac{a_1-\beta_2}{a_2-\beta_2}.
\]

We extend this function onto clA by continuity. In particular, we have

\[
(8) \quad (u, v; p(0, 1), p(1, 0)) = a_1/a_2.
\]

Thus we obtain

11. PROPOSITION. We have

\[
(u, v; p(0, 1), p(1, 0)) (v, w; p(0, 1), p(1, 0)) = (u, w; p(0, 1), p(1, 0))
\]

9 — Colloquium Mathematicum XXXII.2
and, if \(v \) lies between \(u \) and \(w \), then
\[
|\log(u, v; p(0, 1), p(1, 0))| + |\log(v, w; p(0, 1), p(1, 0))| = |\log(u, w; p(0, 1), p(1, 0))|.
\]

Now we are able to define a metric in \(N \).

12. **Definition.** We say that three distinct points in \(N \) are **\(N \)-collinear** if there exists \(t \in T \) which maps these three points to points of \(\Lambda \). The **\(N \)-line** through points \(u \) and \(v \) is the set of points which are collinear with \(u \) and \(v \).

13. **Proposition.** Every \(N \)-line is a curve in \(N \). Its boundary consists of two points in the boundary of \(N \).

14. **Definition.** Fix a positive real \(K \). We define a **\(T \)-invariant distance** \(\delta \) in \(N \) as follows. If \(u \) and \(v \) are distinct points in \(\text{int} N \), then we choose \(a \in T \) such that \(au = p(j, 1) \) and \(av = p(gj, 1) \), where \(g \in C \), and we set
\[
\delta(u, v) := K |\log |g||.
\]

In view of sections 8 and 9, the function \(\delta \) is uniquely determined. We have to express it in \(m_1 \)-coordinates. If \(u = p(c, 1) \) and \(v = p(h, 1) \), then we construct a transformation \(a \) according to the proof of theorem 8. Then we use formula (5) and theorem 8. After some calculations we obtain
\[
\frac{\chi(K^{-1} \delta(u, v))}{(\delta')^2} = \left(|f' - h'|^2 + |f''|^2 + |h|^2 \right)^2 / |2f'' h'|
\]

This formula implies immediately \(\delta(u, v) = \delta(v, u) \). Additivity of \(\delta \) on any \(N \)-line follows from proposition 9.

15. **Theorem.** The infinitesimal form of the metric \(\delta \) is
\[
\frac{\delta s^2}{|p(h, 1)|} = \frac{K^2}{(x')^2} \left((dx^1)^2 + (dx^2)^2 + (dx^3)^2 \right),
\]
where \(x^1 = \text{re} h', x^2 = \text{im} h', x^3 = |h'| \).

Proof. Consider a curve which is parametrized by the mapping \(t \mapsto p(h + tx, 1) \). Let \(X \) be a 1-jet of this mapping, its source being \(0 \). Thus \(X \) is a vector which is tangent to \(N \) at \(u = p(h, 1) \). We have to calculate the norm \(|X| \) of \(X \), which is induced by \(\delta \). We have
\[
|X| = \lim_{t \to 0} \frac{1}{t} \delta(p(h + tx, 1), p(h, 1)).
\]
After some elementary calculations we obtain
\[|X| = \frac{K^2}{|h''|^2} \left((\text{re} x')^2 + (\text{im} x')^2 + |x'|^2 \right) \]
which is consistent with (9). So the following theorem is a corollary to the just obtained formulas:

16. **Theorem.** \(\delta \) is a hyperbolic distance.

III. Final Remarks

Let us denote by \(B \) the boundary of \(N \). This boundary is homeomorphic to the complex projective line (which is isomorphic to the real Moebius sphere). Each \(N \)-line has exactly two points in common with \(B \). These are the so-called infinite points of the line. Conversely, each pair of distinct points on \(B \) determines exactly one \(N \)-line.

The group \(T \) acts as a group of projective transformations. The proper and improper circles in \(B \) are traces of \(N \)-planes according to the following definition:

17. **Definition.** A subset \(\Pi \subset N \) is called an \(N \)-plane if there exists \(a \in T \) which maps \(\Pi \) to
\[\Pi_0 = \text{cl}\{w \in N \mid w = p(h, 1), \text{ where } \text{im} h' = 0\} . \]

Thus each \(N \)-plane is a 2-dimensional submanifold of \(N \).

18. **Theorem.** For any \(N \)-lines \(a \) and \(\beta \) with the unique point of coincidence \(v \in \text{int} N \), there exists a unique \(N \)-plane \(\Sigma \) such that \(a \subset \Sigma \) and \(\beta \subset \Sigma \).

Proof. By theorem 8, there exists \(a \in T \) which sends \(a \) to \(\Lambda \). Let \(z_1 \) and \(z_2 \) be the infinite points of the \(N \)-line \(a \beta \). Apply proposition 9 and perform a transformation \(r \) such that \(r \Lambda = \Lambda \) and \(\text{im} z_1 = \text{im} z_2 = 0 \). Hence \(r \circ a \) sends \(a \) and \(\beta \) into \(\Lambda \). Thus \(a^{-1} \circ r^{-1} \Lambda \) is the \(N \)-plane through \(a \) and \(\beta \).

The following two theorems are easy to prove.

19. **Theorem.** The stationary subgroup \(T_0 \) of \(\Pi_0 \) consists of those transformations which have real matrices and determinants equal to 1.

20. **Theorem.** If we restrict the Klein space \((N, T)\) to \((\Pi_0, T_0)\), then we obtain the plane hyperbolic geometry.

Let \(a \) and \(\beta \) be two \(N \)-lines as in theorem 18. We denote by \(z_1, z_2 \) and \(s_1, s_2 \), respectively, pairs of their infinite points. Thus \(z_1, z_2, s_1, s_2 \) are situated on a circle in \(B \). We denote by \(\vartheta \) hyperbolical measure of
the angle between α and β. Observe that, in view of proposition 6, the mapping $m_1|\text{int} \mathcal{N}$ is conformal. Then the following relation holds between ϑ and the cross-ratio of the chosen pairs of infinite points:

$$(x_1, x_2; s_1, s_2) = -\cotg \frac{\vartheta}{2}.$$

This is proved in [3] in the case where α and β are both in Π_0, but remains true in general because of the invariance with respect to T of both members of this equality.

REFERENCES

Reçu par la Rédaction le 7. 6. 1972