PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 39 | 2 | 265-292
Tytuł artykułu

Zaburzenia kaskady transformujących czynnikow wzrostu typu β w wybranych patologiach człowieka

Treść / Zawartość
Warianty tytułu
EN
Aberrations in the signalling cascade of transforming growth factor β type in selected human pathologies
Języki publikacji
PL
Abstrakty
EN
A transforming growth factor β type (TGFβ) cascade is a multifactorial signalling pathway, which controls the plethora of cellular processes responsible for human organism homeostasis. The importance of alterations of TGFβ-induced signalling remains unknown. Up till now, impaired TGFβ signalling has been observed in pathologies of the musculoskeletal, cardiovascular and reproductive systems. Abnormalities in the TGFβ pathway can be either genetically determined or appear as spontaneous disorders which emerged during embryonic development. Understanding the role of the TGFβ pathway in the aetiology of various diseases appears to be necessary as it may serve in developing new strategies for therapeutic or diagnostic methods.
PL
Kaskada sygnalizacyjna transformujących czynników wzrostu typu β (TGFβ) stanowi indukowany przez wiele cytokin szlak przekazywania sygnału w komórce, pod kontrolą którego znajduje się szereg procesów komórkowych odpowiedzialnych za prawidłowe funkcjonowanie ludzkiego organizmu. Znaczenie zaburzeń sygnalizacji indukowanej czynnikami TGFβ pozostaje nadal nie do końca poznane. Niemniej jednak już na obecnym etapie badań stwierdzić można ich bezsprzeczny udział w patologiach układu kostno-mięśniowego, układu krwionośnego czy układu rozrodczego.
Wydawca

Rocznik
Tom
39
Numer
2
Strony
265-292
Opis fizyczny
Twórcy
Bibliografia
  • Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature. 1997; 390: 465-471.
  • Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev. 2005; 16: 251-263.
  • De Caestecker M. The transforming growth factor-beta superfamily of receptors. Cytokine Growth Factor Rev. 2004; 15: 1-11.
  • Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003; 113: 685-700.
  • Massague J. TGFbeta in Cancer. Cell. 2008; 134: 215-230.
  • Derynck R, Akhurst RJ. Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol. 2007; 9: 1000-1004.
  • Roberts AB, Wakefield LM. The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci USA. 2003; 100: 8621-8623.
  • Rahimi RA, Leof EB. TGF-beta signaling: a tale of two responses. J Cell Biochem. 2007; 102: 593-608.
  • Padua D, Massague J. Roles of TGFbeta in metastasis. Cell Res. 2009; 19: 89 102.
  • Mokrosinski J, Krajewska WM. TGF beta signalling accessory receptors. Postepy Biochem. 2008; 54: 264-273.
  • Yang Z, Mu Z, Dabovic B, Jurukovski V, Yu D, Sung J i wsp. Absence of integrin-mediated TGFbeta1 activation in vivo recapitulates the phenotype of TGFbeta1-null mice. J Cell Biol. 2007; 176: 787-793.
  • Massague J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett. 2006; 580: 2811-2820.
  • Stover DG, Bierie B, Moses HL. A delicate balance: TGF-beta and the tumor microenvironment. J Cell Biochem. 2007; 101: 851-861.
  • Glasgow E, Mishra L. Transforming growth factor-beta signaling and ubiquitinators in cancer. Endocr Relat Cancer. 2008; 15: 59-72.
  • ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci. 2004; 29: 265-273.
  • Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-beta superfamily signalling. Genes Cells. 2002;
  • 7: 1191-1204.
  • Rotzer D, Roth M, Lutz M, Lindemann D, Sebald W i wsp. Type III TGF-beta receptor-independent signalling of TGF-beta2 via TbetaRII-B, an alternatively spliced TGF-beta type II receptor. EMBO J. 2001; 20: 480-490.
  • Bernabeu C, Lopez-Novoa JM, Quintanilla M. The emerging role of TGF-beta superfamily coreceptors in cancer. Biochim Biophys Acta. 2009; 1792: 954-973.
  • Santander C, Brandan E. Betaglycan induces TGF-beta signaling in a ligand-independent manner, through activation of the p38 pathway. Cell Signal. 2006; 18: 1482-1491.
  • Wiater E, Harrison CA, Lewis KA, Gray PC, Vale WW. Identification of distinct inhibin and transforming growth factor beta-binding sites on betaglycan: functional separation of betaglycan co-receptor actions. J Biol Chem. 2006; 281: 17011-17022.
  • Barbara NP, Wrana JL, Letarte M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem. 1999; 274: 584-594.
  • Janssens K, ten Dijke P, Janssens S, Van Hul W. Transforming growth factor-beta1 to the bone. Endocr Rev. 2005; 26: 743-774.
  • Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ. Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet. 2006; 2: e216.
  • Tsuji K, Cox K, Bandyopadhyay A, Harfe BD, Tabin CJ, Rosen V. BMP4 is dispensable for skeletogenesis and fracture-healing in the limb. J Bone Joint Surg Am. 2008; 90 Suppl 1: 14-18.
  • Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L i wsp. BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet. 2006; 38: 1424-1429.
  • Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM. Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci U S A. 2005; 102: 5062-5067.
  • Janssens K, ten Dijke P, Ralston SH, Bergmann C, Van Hul W. Transforming growth factor-beta 1 mutations in Camurati-Engelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein. J Biol Chem. 2003; 278: 7718-7724.
  • Harradine KA, Akhurst RJ. Mutations of TGFbeta signaling molecules in human disease. Ann Med. 2006; 38: 403-414.
  • Groppe JC, Shore EM, Kaplan FS. Functional modeling of the ACVR1 (R206H) mutation in FOP. Clin Orthop Relat Res. 2007; 462: 87-92.
  • Yu PB, Deng DY, Lai CS, Hong CC, Cuny GD, Bouxsein ML i wsp. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 2008; 14: 1363-1369.
  • Fiori JL, Billings PC, De La Pena LS, Kaplan FS, Shore EM. Dysregulation of the BMP-p38 MAPK signaling pathway in cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res. 2006;
  • 21: 902-909.
  • Billings PC, Fiori JL, Bentwood JL, O'Connell MP, Jiao X, Nussbaum B i wsp. Dysregulated BMP signaling and enhanced osteogenic differentiation of connective tissue progenitor cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res. 2008; 23: 305-313.
  • Kaplan FS, Fiori J, De La Pena LS, Ahn J, Billings PC, Shore EM. Dysregulation of the BMP-4 signaling pathway in fibrodysplasia ossificans progressiva. Ann N Y Acad Sci. 2006; 1068: 54-65.
  • Kan L, Hu M, Gomes WA, Kessler JA. Transgenic mice overexpressing BMP4 develop a fibrodysplasia ossificans progressiva (FOP)-like phenotype.
  • Am J Pathol. 2004; 165: 1107-1115.
  • Massague J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000; 103: 295-309.
  • Kawabata M, Imamura T, Miyazono K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev. 1998; 9: 49-61.
  • Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP. A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet. 1996; 12: 315-317.
  • Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Suring K i wsp. Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc Natl Acad Sci U S A. 2003; 100: 12277-12282.
  • Seemann P, Schwappacher R, Kjaer KW, Krakow D, Lehmann K, Dawson K i wsp. Activating and deactivating mutations in the receptor interaction site of GDF5 cause symphalangism or brachydactyly type A2. J Clin Invest. 2005; 115: 2373-2381.
  • Watanabe Y, Kinoshita A, Yamada T, Ohta T, Kishino T, Matsumoto N i wsp. A catalog of 106 single-nucleotide polymorphisms (SNPs) and 11 other types of variations in genes for transforming growth factor-beta1 (TGF-beta1) and its signaling pathway. J Hum Genet. 2002; 47: 478-483.
  • Yamada Y, Harada A, Hosoi T, Miyauchi A, Ikeda K, Ohta H i wsp. Association of transforming growth factor beta1 genotype with therapeutic response to active vitamin D for postmenopausal osteoporosis. J Bone Miner Res. 2000;
  • 15: 415-420.
  • Yamada Y, Miyauchi A, Goto J, Takagi Y, Okuizumi H, Kanematsu M i wsp. Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res. 1998; 13: 1569-1576.
  • Nishiyama A, Takeshima Y, Saiki K, Narukage A, Oyazato Y, Yagi M i wsp. Two novel missense mutations in the myostatin gene identified in Japanese patients with Duchenne muscular dystrophy. BMC Med Genet. 2007; 8: 19
  • Wagner KR, McPherron AC, Winik N, Lee SJ. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol. 2002; 52: 832-836.
  • Bogdanovich S, Krag TO, Barton ER, Morris LD, Whittemore LA, Ahima RS i wsp. Functional improvement of dystrophic muscle by myostatin blockade. Nature. 2002; 420: 418-421.
  • Brouillard P, Vikkula M. Genetic causes of vascular malformations. Hum Mol Genet. 2007; 16 Spec No. 2: R140-R149.
  • Goumans MJ, Liu Z, ten Dijke P. TGF-beta signaling in vascular biology and dysfunction. Cell Res. 2009; 19: 116-127.
  • Gordon KJ, Blobe GC. Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta. 2008; 1782: 197 228.
  • Otten J, Bokemeyer C, Fiedler W. Tgf-Beta superfamily receptors-targets for antiangiogenic therapy? J Oncol. 2010; 2010: 317068-
  • ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007; 8: 857-869.
  • Fernandez L, Sanz-Rodriguez F, Blanco FJ, Bernabeu C, Botella LM. Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway. Clin Med Res. 2006; 4: 66-78.
  • Sabba C, Pasculli G, Lenato GM, Suppressa P, Lastella P, Memeo M i wsp. Hereditary hemorrhagic telangiectasia: clinical features in ENG and ALK1 mutation carriers. J Thromb Haemost. 2007; 5: 1149-1157.
  • van den Driesche S, Mummery CL, Westermann CJ. Hereditary hemorrhagic telangiectasia: an update on transforming growth factor beta signaling in vasculogenesis and angiogenesis. Cardiovasc Res. 2003; 58: 20-31.
  • Prigoda NL, Savas S, Abdalla SA, Piovesan B, Rushlow D, Vandezande K i wsp. Hereditary haemorrhagic telangiectasia: mutation detection, test sensitivity and novel mutations. J Med Genet. 2006; 43: 722-728.
  • Abdalla SA, Letarte M. Hereditary haemorrhagic telangiectasia: current views on genetics and mechanisms of disease. J Med Genet. 2006; 43: 97-110.
  • Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z, i wsp. ALK5- and TGFBR2-independent role ofALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood. 2008; 111: 633-642.
  • Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J. 2002; 21: 1743-1753.
  • Lebrin F, Deckers M, Bertolino P, ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res. 2005; 65: 599-608.
  • Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M i wsp. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J. 2004; 23: 4018-4028.
  • Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C. Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol. 2005; 204: 574-584.
  • Knight PG, Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006; 132: 191-206.
  • Matzuk MM, Kumar TR, Bradley A. Different phenotypes for mice deficient in either activins or activin receptor type II. Nature. 1995; 374: 356-360.
  • Bilezikjian LM, Blount AL, Donaldson CJ, Vale WW. Pituitary actions of ligands of the TGF-beta family: activins and inhibins. Reproduction. 2006; 132: 207-215.
  • Lewis KA, Gray PC, Blount AL, MacConell LA, Wiater E, Bilezikjian LM i wsp. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature. 2000; 404: 411-414.
  • Pierson TM, Wang Y, DeMayo FJ, Matzuk MM, Tsai SY, Omalley BW. Regulable expression of inhibin A in wild-type and inhibin alpha null mice. Mol Endocrinol. 2000; 14: 1075-1085.
  • Josso N, Belville C, di Clemente N, Picard JY. AMH and AMH receptor defects in persistent Müllerian duct syndrome. Hum Reprod Update. 2005; 11: 351-356.
  • Belville C, Van Vlijmen H, Ehrenfels C, Pepinsky B, Rezaie AR, Picard JY i wsp. Mutations of the anti-müllerian hormone gene in patients with persistent müllerian duct syndrome: biosynthesis, secretion, and processing of the abnormal proteins and analysis using a three-dimensional model. Mol Endocrinol. 2004; 18: 708-721.
  • Belville C, Josso N, Picard JY. Persistence of Müllerian derivatives in males. Am J Med Genet. 1999; 89: 218-223.
  • Belville C, Marechal JD, Pennetier S, Carmillo P, Masgrau L, Messika-Zeitoun L i wsp. Natural mutations of the anti-Müllerian hormone type II receptor found in persistent Müllerian duct syndrome affect ligand binding, signal transduction and cellular transport. Hum Mol Genet. 2009; 18: 3002-3013.
  • Beck-Peccoz P, Persani L. Premature ovarian failure. Orphanet J Rare Dis. 2006; 1: 9
  • Di Pasquale E, Rossetti R, Marozzi A, Bodega B, Borgato S, Cavallo L i wsp. Identification of new variants of human BMP15 gene in a large cohort of women with premature ovarian failure. J Clin Endocrinol Metab. 2006; 91: 1976-1979.
  • Chand AL, Ooi GT, Harrison CA, Shelling AN, Robertson DM. Functional analysis of the human inhibin alpha subunit variant A257T and its potential role in premature ovarian failure. Hum Reprod. 2007; 22: 3241-3248.
  • Shelling AN, Burton KA, Chand AL, van Ee CC, France JT, Farquhar CM i wsp. Inhibin: a candidate gene for premature ovarian failure. Hum Reprod. 2000; 15: 2644-2649.
Typ dokumentu
paper
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.psjd-45e4e581-3704-4a48-aeee-4da00e2b1590
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.