On minimal projections generated by isometries of Banach spaces

Let B be a real Banach space. Let A be a linear isometry in B which has a fixed point. The present paper is inspired on a fact that is known to some degree but not precisely discussed in any source, i.e., if the space B is represented as a direct (topological) sum of $\text{Im}(I - A)$ and $\text{Ker}(I - A)$ [where I is the identity map of B], then the projection P onto $\text{Im}(I - A)$ along $\text{Ker}(I - A)$ is the minimal projection (cf. below, Theorem 1.1).

In connection with this fact two problems arise. The first problem concerns a possibility of the representation of a space B as a direct topological sum of $\text{Im}(I - A)$ and $\text{Ker}(I - A)$.

In Section 1 we give necessary and sufficient conditions of this representation for any linear operation in B (cf. [8], [9]).

The second problem concerns the estimation of a norm of a minimal projection \hat{P}. The answer is given in Section 2 with the help of the concave function g (which has no name for the present) and a Chebyshev radius, which were before used by the estimation of a norm of a minimal projection onto hyperspaces [6].

As the examples showing the obtained results we take the vector-valued Orlicz space $B = L_{M_1}([0, 1]; L_{M_2}(0, 1))$, the Banach space with symmetric norm (in particular, l_1, c_0) and the space $C(S^1)$ of all continuous functions on the circle S^1.

Note that in the last two examples, our results can also be obtained in a more complicated way with the help of the theory of operators acting on compact topological groups (cf. for example [11], [12]).

1. **A condition of the representation of B as $B = \text{Im}(I - A) \oplus \text{Ker}(I - A)$**. As usually the Banach space B is called (topological) direct sum of the
subspaces D and K if each $x \in B$ can be uniquely expressed as $x = y + z$, where $y \in D$, $z \in K$, and the linear operator $P : B \to D$, $P(x) = y$ is bounded. We shall write $B = D \oplus K$. The relative projection constant of a complemented subspace D in a Banach space B is the number $\lambda(B, D) = \inf \{ ||P|| : P \text{ projects } B \text{ onto } D \}$.

Let A be a linear bounded map: $B \to B$. Let $B^A = \text{Ker}(I - A)$, $B_A = \text{Im}(I - A)$, let θ be the zero element in B, let N be the set of natural numbers. If a set $D \subset B$ and f is a map on B, then by $f|_D$ we denote the restriction of f to the set D.

Theorem 1.1. Let A be a linear isometric operator of the Banach space B onto itself, and $B = \text{Im}(I - A) \oplus \text{Ker}(I - A)$. Let \tilde{P} be the projection from B onto $\text{Im}(I - A)$ annihilated on $\text{Ker}(I - A)$. Then \tilde{P} is a minimal projection and it can be defined by

$$\tilde{P} = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} A^{-k} PA^k,$$

where P is a projection from B onto $\text{Im}(I - A)$; $A^0 = I$.

Proof. Let P be a projection on subspace B_A. Let \tilde{P} be the map defined by (1).

We shall show that \tilde{P} is defined correctly for each $x \in B$ and it is a projection from B onto B_A along B^A. Indeed, if $z \in B_A$, then there exists a $x \in B$ such that $z = x - Ax$. Then $A^k(z) = (I - A)(A^k z) \in B_A$ for all $k \in N$. Hence $P(A^k(z)) = A^k(z)$ for all $k \in N$ and $\tilde{P}(z) = z$.

If $z \in B^A$, then $A^k(z) = z$ for all $k \in N$. Since $P(z) \in B_A$ and $P(z) = x' - Ax'$ for a $x' \in B$, we have

$$\tilde{P}(z) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} A^{-k}(x' - Ax') = \lim_{n \to \infty} \frac{1}{n}(A^{-n-1}(x') - A(x')) = 0,$$

because $||A^{-1}|| = 1$.

By triangle inequality, we obtain $||\tilde{P}|| \leq ||P||$. Therefore, by linearity and boundedness of the map \tilde{P} defined by (1), \tilde{P} is the minimal projection from B onto B_A along B^A.

Remark 1.1. The proof of this theorem is essentially a proof of some ergodic statistic theorem (cf. [5]). Note that some ergodic statistic theorems were used in fact before, in connection with the investigation of a minimal projection (cf. [1], [13], [16]).

If $\text{Im}(I - A)$ is a reflexive subspace, then the existence of minimal projection follows from the Isbell-Semadeni results ([10]), i.e., if a comple-
mented subspace D of a Banach space B is isometrically isomorphic to a space Z^*, then there exists a minimal projection from B onto D.

For using of Theorem 1.1 we ought to have a condition for a decomposition of B as a direct sum $B = B_A \oplus B^A$. The next proposition gives the conditions of this decomposition (if A is a linear continuous map) in terms of a convergence of averaging operators $A(n)$:

$$A(n) = \frac{1}{n} \sum_{k=0}^{n-1} A^k \quad (n = 1, 2, \ldots), \quad A^0 = I.$$

Example 1.1 (Fürstenberg [7]). Let $C(S^1)$ be the space of all continuous functions on the circle S^1. Then for every linear isometric surjective operator $A: C(S^1) \to C(S^1)$ and for every $x \in S^1$ there exists $\lim_{n \to \infty} (A(n))x$, where $A(n)$ is defined by (2).

Proposition 1.1. Suppose that a linear continuous operator A in a Banach space B is such that B_A is closed and

$$\lim_{n \to \infty} \frac{||A^n||}{n} = 0.$$

In order that B be a direct sum $B_A \oplus B^A$ it is necessary and sufficient that

$$\lim_{n \to \infty} (A(n))(x) \quad \text{for any} \ x \in B.$$

Proof. Necessity. Notice that if $x \in B^A$, then $(A(n))(x) = x$, and therefore $\lim_{n \to \infty} (A(n))(x) = x$. If $x \in B_A$, then there exists $y \in B$ such that $x = y - Ay$, i.e.,

$$\lim_{n \to \infty} (A(n))(x) = (1/n)(y - A^n(y)).$$

Hence, by condition (3), $\lim_{n \to \infty} (A(n))x = \theta$. Thus, for each $x \in B$, (4) is true.

The proof of sufficiency follows directly from [5] (Chapter VIII, § 5.2).

Remark 1.2. (a) If A is an isometry, i.e., a linear isometric operator in B, then from the proof of necessity we have $B_A \cap B^A = \{\theta\}$. In general case the last equation is not true. For example, if $B = \text{span} \{e^x, xe^x\} \subset C([0, 1])$ and A is the differentiation operator in B, then $B_A = B_A^A = \text{span} \{e^x\}$.

(b) If A is an isometry of B onto itself and B is a reflexive space, then $B = \overline{B_A} \oplus B^A$ (cf. [5]), where $\overline{B_A}$ is the closure of $B_A = (I - A)B$.

(c) For the convergence of the sequence $(A(n))_1^\infty$ it is not sufficient that A can be an isometry of B onto itself. Indeed, let $\mathcal{A} = (\alpha_{ij})$, $1 \leq j, i \leq 2$, be a matrix of order two, $\alpha_{ij} \in \mathbb{N}$, $1 \leq i, j \leq 2$, det $\mathcal{A} = 1$, $|\text{tr } \mathcal{A}| > 2$. (For example,

$$\mathcal{A} = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}.$$
Let T be a standard automorphism of a torus $V = S^1 \times S^1$ corresponding to \mathfrak{H}, i.e., for a point $v = (z, w) \in V$, $z = e^{2\pi i x}$, $w = e^{2\pi i y}$, $x, y \in \mathbb{R}$, we have

$$Tv = (e^{2\pi i (a_1 x + a_2 y)}, e^{2\pi i (a_3 x + a_4 y)}).$$

Let A be an isometry of the space $C(V)$ of all real continuous functions on V, generated by T (i.e., $A\varphi(v) = \varphi(Tv)$, where $\varphi \in C(V)$, $v \in V$). Then by a result of H. Fürstenberg from [7] (Theorem 3.3) in $C(V)$ there exists a function f for which the sequence $\{(A(n)f)_1\}^\infty_{n=1}$ is not convergent, though A is a surjection. By Proposition 1.1,

$$C(V) \neq (C(V))_A \oplus (C(V))^A.$$

Proposition 1.2. Let $A : B \to B$ be a linear continuous operator in B. Then the following statements are equivalent:

(i) $B = B_A \oplus B^A$;

(ii) B_A is a subspace of B and $(I - A)|_{B_A}$ is a one-to-one operator of B_A onto B_A;

(iii) for each $x \in B$ there exists $x' \in B$ such that $(I - A)x = (I - A)^2 x'$ and for each sequence $(x_k)_1^\infty$ such that $\lim_{k \to \infty} (I - A)^2 x_k = \theta$, there holds $\lim_{k \to \infty} (I - A)x_k = \theta$.

Proof. (ii) \Rightarrow (i). We shall prove that for every element $x \in B$ there exists $y \in B^A$ and $z \in B_A$ such that $x = y + z$.

Let $x \in B$. Since $(I - A)|_{B_A}$ is a surjective map onto B_A, there exists $z \in B_A$ such that $x - Ax = z - Az$. Let $y = x - z$; then $y - Ay = (x - Ax) - (z - Az) = \theta$. Hence $y \in B^A$. Next, assume that $y = y' + z'$, where $y, y' \in B^A$, $z, z' \in B_A$. Then $z - z' = y - y' \in B^A$. Hence, $(I - A)(z - z') = \theta$. Since the operator $(I - A)|_{B_A}$ is one-to-one, we have $z = z'$ and $y = y'$.

Next note that by the Banach Open Mapping Principle (cf. [2], p. 33) the operator $((I - A)|_{B_A})^{-1} : B_A \to B_A$ is a continuous linear operator. Therefore for each sequence $(z_k)_1^\infty \subset B_A$ such that $(I - A)z_k \to \theta$, we get $\lim_{k \to \infty} z_k = \theta$.

We define here the operator $P : B \to B_A$ by the formula $Px = z$, where $z \in B_A$ is such that $x = y + z$ ($y \in B^A$).

Next, we prove that P is a continuous operator. Indeed, let $(x_k)_1^\infty$ be a sequence such that $x_k \to \theta$, and $(y_k)_1^\infty, (z_k)_1^\infty$ are such that $x_k = y_k + z_k$ ($y_k \in B^A$, $z_k \equiv B_A$, $k = 1, 2, \ldots$). Then

$$||(I - A)x_k|| \leq \left((1 + ||A||) ||x_k||\right) \to 0.$$

Hence,

$$(I - A)x_k \to \theta.$$
By

\[(I - A) x_k = y_k + z_k - y_k -Az = (I - A)z_k,\]

we obtain as above \(z_k = P(x_k) \rightarrow \theta.\)

Since \(P\) is evidently a linear operator, \(P\) is a projection from \(B\) onto \(B_A.\)

(i) \Rightarrow (iii). Let \(x \in B, x = y + z,\) where \(y \in B^A, z \in B_A.\) Then \(z = (I - A)x',\)
where \(x' \in B.\) Hence \((I - A)x = (I - A)(y + z) = (I - A)z = (I - A)^2 x'.\) Next it is easy to verify that \((I - A)_{B_A}\) is a one-to-one surjective operator. Finally, we note that by the Banach Open Mapping Principle the operator \((I - A)_{B_A}^{-1}\) is a continuous linear operator on \(B_A.\)

The implication (iii) \Rightarrow (ii) is obvious.

Remark 1.3. Let \(A: B \rightarrow B\) be a linear continuous operator. It is easy to see that

(a) If \(A(B) = B\) and \(B = B_A \oplus B^A,\) then \(A(B_A) = B_A\) and \(B^{-1} = B^A,\)
\(B_A^{-1} = B_A,\) where \(A^{-1}\) is the inverse operator to \(A.\)

(b) If \(\dim B_A < \infty,\) then \(B = B_A \oplus B^A \iff B_A \cap B^A = \{\theta\}.\)

Example 1.2. Let \(M_i (i = 1, 2)\) be two Orlicz functions: \([0, +\infty) \rightarrow [0, +\infty),\) i.e., continuous convex non-decreasing functions with \(M_i (0) = 0\) and \(M_i \neq 0.\) Let \(L_{M_2} (0, 1)\) be an Orlicz space of equivalence classes of such measurable functions \(h: [0, 1] \rightarrow (-\infty, +\infty)\) for which

\[
\|h\| = \inf \{t > 0: \int_0^1 M_2(|h(x)|/t) dx \leq 1\} < +\infty.
\]

Let \(B = L_{M_1} ([0, 1]; L_{M_2} (0, 1))\) be the Orlicz space of the equivalence classes of strongly measurable functions \(f: [0, 1] \rightarrow L_{M_2} (0, 1)\) for which

\[
\|f\|_1 = \inf \{t > 0: \int_0^1 M_1(|f(x)|/t) dx \leq 1\} < +\infty.
\]

Now, we shall define for every \(n \in \mathbb{N}\) a map \(\tau_n: [0, 1] \rightarrow [0, 1]\) as follows: if \(n = 1,\) then \(\tau_1(x) = x\) for every \(x \in [0, 1];\) if \(n \geq 2,\) then

\[
\tau_n(x) = \begin{cases}
 x + \frac{1}{n} & \text{if } x \in \left(0, \frac{n - 1}{n}\right); \\
 x - \frac{n - 1}{n} & \text{if } x \in \left[\frac{n - 1}{n}, 1\right]; \\
 1 & \text{if } x = 0.
\end{cases}
\]

An operator \(Q(x): L_{M_2} (0, 1) \rightarrow L_{M_2} (0, 1)\) defined for every \(x \in (0, 1]\) by
\(Q(x)h = h(\tau_{[1/x]}(y))\) (where \(h \in L_{M_2} (0, 1),\) \([1/x]\) is the greatest integer of the number \(1/x,\) \(y \in [0, 1]\), and \(Q(0)h = h,\) for \(x = 0,\) is a linear isometry.
Then the operator \(A : B \to B \), such that \(Af(x) = Q(x)(f(\tau_2(x))) \) for each \(f \in B \), \(x \in [0, 1] \) is a linear isometry of \(B \) onto itself.

\(B^A \) will be a subspace of all functions \(f \in B \), satisfying for every \(n \in N \) the property:

\[
(f(x))(\tau_n(y)) = (f(\tau_2(x)))(y) \quad \text{for } \mu\text{-almost every } x \in \left(\frac{1}{n+1}, \frac{1}{n} \right)
\]

and \(y \in [0, 1] \) relative to Lebesgue measure \(\mu \).

\(B_A \) will be a subspace of all functions \(f \in B \) satisfying for every \(n \in N \setminus \{1\} \) the property:

\[
\sum_{k=0}^{n-1} (f(x) + f(x + \frac{1}{n}))(y + k/n) = 0
\]

for \(\mu\text{-almost every } x \in (1/(n+1), 1/n] \) and \(y \in [0, 1/n] \) relative to Lebesgue measure \(\mu \).

It is easy to verify that the subspaces \(B^A \) and \(B_A \) are infinite-dimensional and that the operator \(A \) satisfies condition (iii) from Proposition 1.2.

Now, let \(P \) be a projection from \(B \) onto \(B_A \) which can be defined in the following manner: \(Pf(x) = f(x) \) if \(x \in [0, 1] \); if \(n \geq 2 \) and \(x - \frac{1}{n} \in (1/(n+1), 1/n] \), then

\[
(Pf(x))y = \begin{cases}
(f(x))y & \text{if } y \in [0, \frac{n-1}{n}], \\
- \sum_{k=0}^{n-1} (f(x - \frac{1}{n}) + f(x))(y - \frac{k}{n}) & \text{if } y \in \left[\frac{n-1}{n}, 1 \right].
\end{cases}
\]

By Theorem 1.1 and Proposition 1.2 the projection \(\tilde{P} : B \to B_A \) defined by (1) is a minimal one. By virtue of results of Section 2, \(\|P\| \leq 2 \).

2. Evaluation of norm of minimal projection, generated by isometry. In this section, \(S_X \) (resp. \(U_X \)) will denote the unit sphere (resp. the unit ball) of a real Banach space \(X \).

Let \(D, K \) be subspaces of a Banach space \(B \) such that \(B = D \oplus K \). Let \(x \in S_K \) and \(D_x = D \oplus \text{span} \{x\} \). Let \(f \in S_{D^*_x} \) be such that \(f^{-1}(0) = D \).

For every \(a \in [0, 1] \), let

\[
W^x_a = f^{-1}(a), \quad C^x_a = U_{D_x} \cap W^x_a, \quad \varrho^x_D(a) = \inf_{z \in W^x_a, y \in C^x_a} ||z - y||,
\]

\(C^x_a \) and \(\varrho^x_D(a) \) will be called, respectively, the hypercircle in \(D \) and the Chebyshev radius of \(C^x_a \) (cf. [6]).

Next write \(C^x_x \) for \(\sup_{a \in (0, 1)} \varrho^x_D(a) \) and \(C^x_K \) for \(\sup_{x \in S_K} C^x_x \). Consider now the
function \(g : [1, 2] \to [1, 2] \) (cf. [6]) defined as

\[
g(t) = \begin{cases}
1 + \frac{1}{2}((t-1) + \sqrt{(t-1)^2 + 8(t-1)}) & \text{if } 1 \leq t \leq \sqrt{17} - 3, \\
1 + \frac{8(t-1)}{t^2 + 4(t-1)} & \text{if } \sqrt{17} - 3 < t \leq 2.
\end{cases}
\]

Note that \(g \) is strictly increasing and concave. Moreover, \(g(1) = 1, g(2) = 2 \), \(g(t) \geq t \) for each \(t \in [1, 2] \). In terms of the function \(g \) and the number \(C_B^\delta \) we can evaluate the norm of the minimal projection \(\tilde{P} \) defined by (1).

Theorem 2.1. Let \(A \) be a linear isometry of Banach space \(B \) onto itself such that \(B = \text{Im}(I-A) \oplus \text{Ker}(I-A) \). Let \(D = \text{Im}(I-A), K = \text{Ker}(I-A) \). Let \(\tilde{P} \) be a projection from \(B \) onto \(D \) along \(K \). Then

\[
1 \leq C_B^\delta \leq \lambda(D_x, D) = ||\tilde{P}|| \leq g(C_B^k) \leq 2.
\]

Proof. Let \(x \in S_K \) and \(D_x = D \oplus \text{span}\{x\} \). By Remark 1.3 the operator \(A_x = A|_{D_x} \) is an isometry of \(D_x \) onto itself with \(\text{Im}(I-A) = D, \text{Ker}(I-A) = \text{span}\{x\} \). By Theorem 1.1, the projection \(P^\delta_x : D_x \to D \) along \(\text{span}\{x\} \) is a minimal projection, i.e., \(||P^\delta_x|| = \lambda(D_x, D) \). In view of the fact that \(\text{codim}_{D_x} D = 1 \) and by a result of C. Franchetty ([6], Theorem 3) we have

\[1 \leq C_B^\delta \leq \lambda(D_x, D) \leq g(C_B^k) \leq 2. \]

Observe also that in view of the inequality \(\lambda(D_x, D) \leq \lambda(B, D) \), we obtain \(1 \leq C_B^\delta \leq \lambda(B, D) \). Next we use the fact that the projection \(\tilde{P} \) is minimal and \(||\tilde{P}|| = \lambda(B, D) \) (cf. Theorem 1.1).

If \(||\tilde{P}|| = 1 \), then the theorem follows from the identity \(g(1) = 1 \).

Next assume that \(||\tilde{P}|| > 1 \). Then for any \(\varepsilon > 0 \) with \(\varepsilon < ||\tilde{P}|| - 1 \), there exists \(x_0 \in S_K \) such that \(||\tilde{P}(x_0)|| + \varepsilon > ||\tilde{P}|| \). Let \(y_D \) and \(y_K \) be such that \(x_0 = y_D + y_K \) with \(y_D \in D \) and \(y_K \in K \). Evidently, \(y_K \neq \theta \).

Let \(z = y_K/||y_K|| \). Then \(||\tilde{P}(x_0)|| = ||P^\delta_k(x_0)|| \leq ||P^\delta_k|| = \lambda(D_z, D) \), where \(P^\delta_k \) is the projection from \(D_z = D \oplus \text{span}\{z\} \) onto \(D \) along \(\text{span}\{z\} \). Clearly, \(\lambda(B, D) < \lambda(D_z, D) + \varepsilon \). Since the function \(g \) is strictly increasing, we get

\[
\lambda(B, D) \leq \sup_{x \in S_K} \lambda(D_x, D) \leq \sup_{x \in S_K} g(C_B^\delta) \leq g\left(\sup_{x \in S_K} C_B^\delta\right) = g\left(\sup_{x \in S_K} C_B^k\right) \leq 2.
\]

By Theorem 2.1 and a result of Franchetty in [6] (Theorem 4), taking into account the form of function \(g \), we get directly:

Corollary 2.1. Let \(A \) be a linear isometry of a Banach space \(B \) onto itself and \(B = \text{Im}(I-A) \oplus \text{Ker}(I-A) \). Let \(D = \text{Im}(I-A), K = \text{Ker}(I-A) \). Then

(1) \(\lambda(B, D) = 1 \iff C_B^\delta = 1 \iff \forall x \in S_K: C_B^\delta = 1 \iff \forall a \in (0, 1) \)

and \(\forall x \in S_K: \varphi_B^\delta(a) \leq 1 \),

(II) \(\lambda(B, D) < 2 \iff C_B^\delta < 2 \iff \forall x \in S_K \exists a_x \in (0, 1): \varphi_B^\delta(a_x) < 1 + a_x \),

(III) \(\lambda(B, D) = 2 \iff C_B^\delta = 2 \).
In the next example we give a realization of cases (II) and (III) of Corollary 2.1. For case (I), see [11] (Proposition 3.a.4).

Example 2.1 Let B be a Banach space with the symmetric norm (2) (relative to a normal basis $(e_i)_i$ ([17], [18])). Let $(j(i))_{i=1}^\infty$ be a strictly increasing sequence of natural numbers so that $j(1) = 1$ and $k(i) = j(i+1) - j(i) \geq 3$. Now, let $A: B \to B$ be a linear isometry such that $A(e_s) = e_{s+1}$ for every $s \in \mathbb{N}$ and $j(i) \leq s < j(i+1) - 1$ and $A_{j(i)+1} = e_{j(i)} (i = 1, 2, \ldots)$.

Let $D_{k(i)} = \{x = (\alpha_1, \alpha_2, \ldots) \in B: \sum_{v=j(i)}^{j(i)+1-1} \alpha_v = 0, \alpha_v = 0$ if $v < j(i)$ or $v \geq j(i+1)\}$, $B_{k(i)} = \text{span} \{e_{j(i)}, \ldots, e_{j(i)+1-1}\}$, $i = 1, 2, \ldots$

It is easy to see that $\dim(B_{k(i)}/D_{k(i)}) = 1$. From Theorem 1.1 it follows immediately that the isometry A generates in the subspace $B_{k(i)}$ the minimal projection P_i from $B_{k(i)}$ onto $D_{k(i)}$ and $\|P_i\| = \lambda(B_{k(i)}, D_{k(i)})$.

Now, in view of Proposition 1.2 it is easy to check that its condition (ii) holds. Hence, by Theorem 1.1 the projection \tilde{P} from B onto $D = \text{Im}(I - A) = \bigoplus_{i=1}^\infty D_{k(i)}$ along $\text{Ker}(I - A)$ is a minimal projection.

It is obvious that

$$\|\tilde{P}\| = \sup_i \|P_i\|$$

(because for each $x = \sum_{i=1}^\infty x_i e_i$ we have $\|x\| \geq \|\sum_{v=j(i)}^{j(i)+1-1} \alpha_v e_v\|$, $i = 1, 2, \ldots$, [18]).

Now, let $B = l_1$ or $B = c_0$. We prove that $\|P_i\| = 2 - 2/k(i)$ ($i = 1, 2, \ldots$). Indeed, if $B = l_1$, then there exists a linear isometry $F_1: B_{k(i)} \overset{\text{onto}}{\to} l_1^{|k(i)|}$, so $F_1(D_{k(i)}) = f_{1,i}^{-1}(0)$, where $f_{1,i} = (1, \ldots, 1) \in (l_1^{|k(i)|})^\ast$. If $B = c_0$, then there exists a linear isometry $F_2: B_{k(i)} \overset{\text{onto}}{\to} l_\infty^{|k(i)|}$, so $F_2(D_{k(i)}) = f_{2,i}^{-1}(0)$, where $f_{2,i} = (1/k(i), \ldots, 1/k(i)) \in (l_\infty^{|k(i)|})^\ast$.

By the result of [3] we get in both cases: $\lambda(B_{k(i)}, D_{k(i)}) = 2 - 2/k(i)$. By (8), $\|\tilde{P}\| = 2 - \inf_i (2/k(i))$.

Therefore, $\|\tilde{P}\| = 2$ and $C_{K}^i = 2$, where $K = \text{Ker}(I - A)$, if $\sup k(i) = +\infty$. If $\sup k(i) < +\infty$, then for each $x \in S_K$ there exists $a_x \in (0, 1)$ such that $\gamma_{ii}(a_x) < 1 + a_x$.

(2) Let E be the set all $\varepsilon = (\varepsilon_1, \varepsilon_2, \ldots)$ with $\varepsilon_i \in \{-1, 1\}$ ($i = 1, 2, \ldots$). Let Π be the set of all permutations $\sigma: \mathbb{N} \to \mathbb{N}$. A Banach space B with a normal basis $(e_i)_i$ is said to be symmetric iff $\|\varepsilon \sigma x\| = \|x\|$ for every $x \in B$, $\sigma \in \Pi$, $\varepsilon \in E$ (cf. [18]).
Remark 2.1. Note, if $B = c_0$, then the projection \tilde{P} from Example 2.1 is the unique minimal projection onto D.

If $B = l_1$, then the uniqueness of the minimal projection \tilde{P} onto D (from Example 2.1) fails, although the projections P_i are unique minimal projections from $B_{k(i)}$ onto $D_{k(i)}$, $i = 1, 2, \ldots$ (Cf. [14], [15].)

From Theorem 2.1 we get immediately:

Corollary 2.2. Suppose D be a complemented subspace of Banach space B such that $\lambda(B, D) > 2$. Then there exists no linear isometry A of B onto itself such that $D = \text{Im}(I - A)$ and $B = D \oplus \text{Ker}(I - A)$.

Example 2.2. Let $B = \tilde{C}([0, 2\pi])$ be the space of all continuous 2π-periodic real-valued functions defined on $[0, 2\pi]$, and D_n ($n \geq 1$), be the subspace in B consisting of all trigonometric polynomials of degree $\leq n$.

We shall prove that for $n \geq 8$ there exists no linear isometry A of B onto itself such that $\text{Im}(I - A) = D_n$. Suppose that for some $n \geq 8$ there exists such a linear isometry A.

By Proposition 1.1 and Example 1.1 it follows that $B = D_n \oplus \text{Ker}(I - A)$.

Hence, by Theorem 2.1, $\lambda(B, D_n) \leq 2$. On the other hand, $\lambda(B, D_n)$ is equal to the Lebesgue Constant ϱ_n such that $\varrho_n = (4/\pi^2) \log n + 1.27033 + \varepsilon_n$, where $0.166 > \varepsilon_n \downarrow 0$ (cf., for example, [4]). Taking into account that $n \geq 8$, we have $\varrho_n > 2$, a contradiction.

References

FINANCE-ECONOMICS INSTITUTE, LENINGRAD
and
INSTITUTE OF MATHEMATICS, PEDAGOGICAL UNIVERSITY OF BYDGOSZCZ