On the spectrum of the Laplace operator

1. Introduction. Let us consider in the Euclidean space \mathbb{R}^k, $k > 1$, a bounded domain U and let its boundary be denoted by ∂U. In various physical considerations one is led to the eigenvalue problem

$$\frac{1}{2} \Delta u = \mu u, \quad "u = 0 \text{ on } \partial U".$$

For U with smooth boundary the condition "$u = 0$ on ∂U" simply means that $u(x) \to 0$ as $x \to z \in \partial U$, $x \in U$. It is well known that under certain smoothness hypothesis on ∂U the domain $D(\Delta)$ of the Laplace operator corresponding to this boundary condition can be chosen in such a way that $\frac{1}{2}\Delta$ as an operator in $L^2(U)$ is symmetric, has discrete spectrum and the orthonormal set \{\varphi_j\} of eigenfunctions corresponding to the eigenvalues \{\mu_j\} is complete.

H. Weyl established in 1915 (cf. [13], pp. 41-45) the asymptotic formula

$$(1.1) \quad \lim_{n \to \infty} \frac{-\mu_n}{n^{2/k}} = 2\pi \left(\frac{\Gamma(\frac{1}{2} k + 1) }{|U|} \right)^{2/k},$$

where $|U|$ is the Lebesgue measure of U.

About twenty years later T. Carleman succeeded in proving (cf. [3])

$$(1.2) \quad \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} q_j^2(x) = \frac{1}{|U|} \quad \text{for } x \in U.$$
2. Potential theory. Most of the results and definitions mentioned here can be found in [2].

The fundamental solution for $\frac{1}{2} \Delta$ in \mathbb{R}^k is known to be

\[
(2.1) \quad h(x) = \begin{cases}
\frac{1}{\pi} \log |x| & \text{for } k = 2, \\
\frac{1}{2 \pi^{k/2}} \Gamma(\frac{1}{2} k - 1) |x|^{2-k} & \text{for } k > 2;
\end{cases}
\]

i.e. in the distribution sense

\[
(2.2) \quad \frac{1}{2} \Delta h_y = -\delta_y, \quad y \in \mathbb{R}^k,
\]

where $h_y(x) = h(x - y)$ and δ_y is the δ-Dirac distribution concentrated at y.

The letter U is reserved for fixed but arbitrary bounded domain in \mathbb{R}^k.

The harmonic measure for U corresponding to $x \in U$ is denoted by μ_x; $C(\partial U)$ denotes the set of all continuous functions on ∂U. The Wiener generalized solution of the Dirichlet problem with the boundary function $f \in C(\partial U)$ is then equal to

\[
Hf(x) = \int_{\partial U} f(z) \mu_x(dz), \quad x \in U.
\]

A point $z \in \partial U$ is said to be regular if and only if for all $f \in C(\partial U)$

\[
(2.3) \quad Hf(x) \to f(z) \quad \text{as } x \to z, \quad x \in U.
\]

The set of all regular points is denoted by $\partial_r U$. Now we are ready to write the formula for the Green function of U

\[
(2.4) \quad G(x, y) = h(x - y) - H_{h_y}(x), \quad x, y \in U.
\]

It can be shown that

\[
H_{h_y}(x) = H_{h_x}(y) \quad \text{for } x, y \in U,
\]

whence the symmetry of $G(x, y)$ follows.

The set of all real valued bounded and continuous functions on U is denoted by $C(U)$ and the set of all bounded Borel functions on U by $B(U)$. For $f \in B(U)$ we define $\|f\| = \sup \{|f(x)| : x \in U\}$. Clearly $[C(U), \|\|]$ and $[B(U), \|\|]$ are Banach spaces.

Let us write

\[
Hf(x) = \int_U h(x - y)f(y) dy, \quad x \in \mathbb{R}^k.
\]
It can be seen from (2.1) that

\begin{equation}
H: B(U) \rightarrow C(R^k),
\end{equation}

where $C(R^k)$ is the set of all continuous functions on R^k.

The Green operator G is defined by formula

\begin{equation}
Gf(x) = \int_{U} G(x, y)f(y)\,dy, \quad x \in U.
\end{equation}

This is a good place to introduce the set

\[C_0(U) = \{ f \in C(U) : \text{for each } z \in \partial U, f(x) \rightarrow 0 \text{ as } x \rightarrow z, x \in U \}, \]

it is immediate that $C_0(U)$ is a closed subspace of the Banach space $C(U)$.

Definitions (2.1) and (2.4) can be used to show that G is a continuous operator on $B(U)$ and, moreover, that $G: B(U) \rightarrow C(U)$.

Now, let $f \in B(U)$. According to (2.6), (2.4) and (2.5) we have

\[Gf(x) = g(x) - H_0(x) \quad \text{with } g = Hf \]

whence by (2.3) $Gf \in C_0(U)$. Thus,

\begin{equation}
G: B(U) \rightarrow C_0(U).
\end{equation}

This property will still hold after we replace $B(U)$ by the set of all bounded Lebesgue measurable functions on U.

In the sequel we are going to employ the following maximum principle: If h is harmonic on U and $h \in C_0(U)$, then $h = 0$.

The domain of the Laplace operator is defined as follows

\begin{equation}
D(\Delta) = \{ f \in C_0(U) \cap C^2(U) : \Delta f \in C(U) \},
\end{equation}

where $C^2(U)$ is the set of all functions f on U with continuous partial derivatives of order two.

It is very convenient to state in this place the following identity

\begin{equation}
f = G(-\frac{1}{2} \Delta f) \quad \text{for } f \in D(\Delta).
\end{equation}

For the proof let $f \in D(\Delta)$ and $g = G(-\frac{1}{2} \Delta f)$. It follows from (2.7) and (2.8) that $f - g \in C_0(U)$. According to (2.2) and (2.4) we have $\Delta g = \Delta f$ in the distribution sense and therefore $g - f$ is harmonic. Thus, the above maximum principle gives the required equality $g = f$.

3. Heat equation. In the time-space $(0, \infty) \times R^k$ the fundamental solution for the heat equation

\begin{equation}
\frac{1}{2} \Delta u = \frac{\partial u}{\partial t}
\end{equation}
is known to be
\begin{equation}
(3.2) \quad p(t, x, y) = (2\pi t)^{-\frac{1}{2}} \exp \left(-\frac{1}{2t} |x-y|^2 \right).
\end{equation}

For fixed \(y \in \mathbb{R}^k \) the function is the unique positive solution corresponding to the initial distribution \(\delta_y \) and to the boundary condition \(p(t, x, y) \to 0 \) as \(x \to \infty \) for each positive \(t \).

Now let \(U \) be bounded domain in \(\mathbb{R}^k \). We are interested in the fundamental solution for equation (3.1) on \((0, \infty) \times U \) corresponding to the initial distribution \(\delta_y \) and to the boundary values zero, i.e. we would like to have for each \(y \in U \) on \((0, \infty) \times U \) a positive function \(q(\cdot, \cdot, y) \) satisfying (3.1) and such that \(q(t, \cdot, y) \to \delta_y \) with \(t \to 0_+ \) and for each \(t > 0 \), \(q(t, x, y) \to 0 \) with \(x \to z \in \partial_x U, \ x \in U \). The existence and uniqueness of such \(q(t, x, y) \) can be established either probabilistically or with the aid of the axiomatic potential theory of H. Bauer (cf. [8], [9], [5] and [1]). Either approach can be used to derive the following properties of \(q(t, x, y) \):

1° \(0 < q(t, x, y) < p(t, x, y) \) on \((0, \infty) \times U \times U \).

2° \(q(t, x, y) \) is symmetric in \(x \) and \(y \).

3° For \(t > 0, s > 0 \) and \(x, y \in U \) we have
\[q(t+s, x, y) = \int_U q(t, x, z)q(s, z, y)\,dz. \]

4° For fixed \(t > 0 \) and \(x \in U \), \(q(t, x, \cdot) \) is in \(C_0(U) \).

5° Let
\[Q_t f(x) = \int_U f(y)q(t, x, y)\,dy, \]
and let \(f \in C(U) \). Then for each \(x \in U \) we have
\begin{equation}
(3.3) \quad Q_t f(x) \to f(x) \quad \text{with} \quad t \to 0_+. \tag{3.3}
\end{equation}

6° \(\{Q_t, t > 0\} \) is a semigroup of operators in \(B(U) \) with \(\|Q_t\| \leq 1 \) and, moreover,
\begin{equation}
(3.4) \quad Q_t : B(U) \to C(U). \tag{3.4}
\end{equation}

7° For \(x, y \in U \) we have
\begin{equation}
(3.5) \quad G(x, y) = \int_0^\infty q(t, x, y)\,dt. \tag{3.5}
\end{equation}

8° For each \(x \in U \) there exists on \((0, \infty) \times U \) a Borel probability measure \(\nu_x \) such that
\begin{equation}
(3.6) \quad q(t, x, y) = p(t, x, y) - \int_{E_t} p(t-s, z, y)\nu_x(ds, dz), \tag{3.6}
\end{equation}
where \(E_t = (0, t) \times U \).
In the Banach space $B(U)$ we can introduce in a natural way the notion of weak convergence (cf. [6], pp. 77-79) which is characterized as follows: $f = \text{wlim} f_n$ for $f_n, f \in B(U)$, i.e. f is a weak limit of the sequence $\{f_n\}$ if and only if the sequence $\{\|f_n\|\}$ is bounded and $f_n(x) \to f(x)$ for $x \in U$.

For the semigroup $Q_t: B(U) \to B(U)$ the set

$$B_0(U) = \{f \in B(U): f = \text{wlim}_{t \to 0^+} Q_t f\}$$

is called the invariant subspace.

Notice that from (3.3) and from the inequality $\|Q_t\| \leq 1$ it follows

(3.7)

$$C(U) \subseteq B_0(U).$$

The weak infinitesimal operator of the semigroup $\{Q_t\}$ is defined by the formula

(3.8)

$$Af = \text{wlim}_{t \to 0^+} \frac{Q_t f - f}{t}.$$}

The domain of A is denoted by $D(A)$ and it is defined as the set of all $f \in B_0(U)$ for which the right-hand side of (3.8) exists and belongs to $B_0(U)$.

The resolvent operator R_λ for the semigroup $\{Q_t\}$ is defined for $f \in B(U)$ as follows

(3.9)

$$R_\lambda f(x) = \int_0^\infty e^{-\lambda t} Q_t f(x) dt, \quad \lambda > 0, \ x \in U.$$

The case of $\lambda = 0$ needs to be discussed separately. Notice that for $f \geq 0$ according to (3.9) and (3.5) we have $R_\lambda f \neq Gf$ as $\lambda \searrow 0$ and therefore for arbitrary $f \in B(U)$, $R_\lambda f(x) \to Gf(x)$ as $\lambda \to 0^+$ and $x \in U$. Moreover,

$$\|R_\lambda f\| \leq \|R_\lambda 1\| \leq \|G\| \|f\| \leq \|G1\| \|f\|.$$

Thus,

$$Gf = \text{wlim}_{\lambda \to 0^+} R_\lambda f, \quad f \in B(U),$$

but this means that G is the potential operator of the semigroup $\{Q_t\}$. Since G is bounded we can apply a known result on weak infinitesimal operators for semigroups of contractions (cf. [6], p. 65) to obtain

(3.10)

$$G: B_0(U) \to D(A),$$

$$-A: D(A) \to B_0(U),$$

and that G is the inverse to $-A$, i.e.

(3.11)

$$(-A)Gf = f \quad \text{for } f \in B_0(U),$$

$$G(-A)f = f \quad \text{for } f \in D(A).$$
Combining (3.7) and (3.10) we find that $G[C(U)] \subset D(A)$ whence by (2.9) we get
\[(3.12) \quad D(A) \subset D(A).\]

Now we would like to check
\[(3.13) \quad Af = \frac{1}{2} Af \quad \text{for} \quad f \in D(A).\]

This can be seen as follows. Let $f \in D(A)$. According to (2.9) $f = G(-\frac{1}{2} Af)$, where $-\frac{1}{2} Af \in C(U) \subset B_0(U)$ and therefore (3.11) gives $Af = AG(-\frac{1}{2} Af) = \frac{1}{2} Af$. Thus we have shown that A is an extension of A.

4. The eigenvalue problem. Consider the Hilbert space $L^2(U)$ with the scalar product
\[
(f, g) = \int_U f(x)g(x)dx, \quad \|f\|_2 = \sqrt{(f, f)}.
\]

The Green operator G is a self-adjoint weakly singular integral operator in $L^2(U)$ with the kernel $G(x, y)$. The weak singularity follows from (2.1) and (2.4), i.e. we have
\[
0 \leq G(x, y) \leq \frac{C}{|x-y|^3}, \quad x, y \in U
\]
with some constants C and $0 < \delta < k$. Defining
\[
G^{(0)}(x, y) = G(x, y), \quad G^{(m+1)}(x, y) = \int_U G(x, z)G^{(m)}(z, y)dz
\]
we find that (cf. [12], p. 75)
\[(4.1) \quad G^{(m)}(x, y) \leq C_m, \quad C_m = \text{const}, \quad x, y \in U.
\]

This inequality allows to establish the compactness of G in $L^2(U)$ and in particular that its spectrum is discrete with 0 as the only limit point.

Using Property 3° of Section 3 and (3.5) one shows (cf. [4]) that G is positive, i.e. $(Gf, f) > 0$ for $f \neq 0, f \in L^2(U)$. This implies that 0 is not an eigenvalue and that the spectrum of G is non-negative. Thus, there exists in $L^2(U)$ an orthonormal complete set of eigenvectors $\{\varphi_j\}$ such that the corresponding eigenvalues λ_j satisfy the inequalities $\lambda_{j+1} \leq \lambda_j$.

It is clear that $G^m \varphi_j = \lambda_j^m \varphi_j$ and therefore (4.1) gives
\[(4.2) \quad \|\varphi_j\| \leq \frac{C_m}{\lambda_j^m} |U|^{1/2}.
\]
Consequently the eigenfunctions φ_j are bounded and Lebesgue measurable and therefore by the modified property (2.7) we get

$$G\varphi_j = \lambda_j \varphi_j \quad \text{and} \quad \varphi_j \in C_0(U) \quad \text{for all } j. \tag{4.3}$$

Applying to both sides of (4.3) the Laplace operator in the distribution sens we obtain

$$\frac{1}{2} \Delta \varphi_j + \frac{1}{\lambda_j} \varphi_j = 0. \tag{4.4}$$

Since the operator $\frac{1}{2} \Delta - \lambda_j^{-1}$ is elliptic we can apply the H. Weyl Lemma ([7], p. 140, Corollary 4.1.2) to find that the functions φ_j are in $C^\infty(U)$. Moreover, (4.2) gives $\frac{1}{2} \Delta \varphi_j = \lambda_j^{-1} \| \varphi_j \| < \infty$ whence $\frac{1}{2} \Delta \varphi_j \in C(U)$ and therefore $\varphi_j \in D(\Delta)$. Consequently, if we write μ_j for $-\lambda_j^{-1}$, then in the classical sense

$$\frac{1}{2} \Delta \varphi_j = \mu_j \varphi_j, \quad \varphi_j \in D(\Delta). \tag{4.4}$$

Since $\{\varphi_j\}$ is a basis it follows that $D(\Delta)$ is dense in $L^2(U)$. Using (2.9) we get $(Af, g) = (f, A\varphi_j)$ for $f, g \in D(\Delta)$. This and (4.4) show that the operator $\frac{1}{2} \Delta$ with the domain $D(\Delta)$ is symmetric, it has a discrete spectrum and an orthonormal complete set of eigenvectors $\{\varphi_j\}$ to which there correspond the eigenvalues $\{\mu_j\}$, $\mu_j = -\lambda_j^{-1}$.

5. The resolvent equation. It is known that for $\lambda > 0$ the operator $(\lambda I - \Delta)^{-1}$ maps $D(\Delta)$ onto $B_0(U)$ in one-to-one way and that it is equal to the resolvent operator R_λ (cf. [6], p. 65) defined in (3.9). Thus for $g \in B_0(U)$ and $f = R_\lambda g$ we have

$$\lambda f - Af = g.$$

Applying to both sides the Green operator G we obtain by (3.11)

$$\lambda Gf + f = Gg.$$

Introducing $g_\lambda = \lambda R_\lambda g$ we get

$$\lambda Gg_\lambda + g_\lambda = \lambda Gg.$$

This and inequalities (4.1) and (4.2) give for some m

$$g_\lambda(x) = \sum_{i=1}^{m} (-\lambda)^i G^i g(x) + (-\lambda)^{m+1} \sum_{j=1}^{\infty} \frac{\lambda_j^{m+1}}{1 + \lambda \lambda_j} (g, \varphi_j) \varphi_j(x),$$

and the series converges uniformly and absolutely on U.

Spectrum of the Laplace operator 47
It is seen from (3.9) that the last equality can be written by means of the Laplace transform. The uniqueness theorem on Laplace transform and a simple additional argument lead to the formula

\[Q_t g(x) = \sum_{j=1}^{\infty} e^{-t\lambda_j} (g, \varphi_j) \varphi_j(x), \quad x \in U, \ t > 0, \ g \in B_0(U). \]

Now, \(C(U) \subset B_0(U) \) and therefore (5.1) gives

\[q(t, x, y) = \sum_{j=1}^{\infty} e^{-t\lambda_j} \varphi_j(x) \varphi_j(y), \]

where \(t > 0 \) and \(x, y \in U \).

For \(U \) with smooth boundary formula (5.2) is well known.

6. Theorems of H. Weyl and T. Carleman. To formulate the final results it is more natural to consider the semigroup \(\{Q_t\} \) and its potential \(G \) as operators acting in \(L^2(U) \).

Denoting by \(\|Q_t\|_2 \) the norm of \(Q_t \) in \(L^2(U) \) we check easily with the help of (5.2) that \(\|Q_t\|_2 \leq 1 \).

Let \(Q \) denote the \(L^2(U) \) infinitesimal operator of the semigroup \(\{Q_t\} \) and let \(D(Q) \) be its domain. We are going to show that

\[D(Q) = \{ g = Gf : f \in L^2(U) \}. \]

Let \(D \) denote the right-hand side of (6.1). The positiveness of \(G \) implies that the mapping \(G : L^2(U) \to D \) is one-to-one. It should be clear that formula (5.1) gives

\[Q_t g = \sum_{j=1}^{\infty} e^{-t\lambda_j} (g, \varphi_j) \varphi_j \quad \text{for } g \in L^2(U) \]

with the right-hand side convergent absolutely and uniformly on \(U \).

Suppose that \(g \in D \), i.e. \(g = Gf, f \in L^2(U) \). The completeness of \(\{\varphi_j\} \) and (6.2) give

\[\left\| \frac{Q_t g - g}{t} + f \right\|_2^2 = \sum_{j=1}^{\infty} \left[\lambda_j e^{-t\lambda_j} - \frac{1}{t} + 1 \right]^2 (f, \varphi_j)^2 \to 0 \quad \text{as } t \to 0^+. \]

Thus, \(g \in D(Q) \) and, moreover,

\[QGf = -f \quad \text{for } f \in L^2(U). \]

Conversely, let \(g \in D(Q) \). Then

\[\left\| \frac{G Q_t g - g}{t} + g \right\|_2^2 = \sum_{j=1}^{\infty} \left[\lambda_j e^{-t\lambda_j} - \frac{1}{t} + 1 \right]^2 (g, \varphi_j)^2 \to 0 \quad \text{as } t \to 0^+, \]
and therefore
\begin{equation}
GQg = -g \quad \text{for } g \in D(Q),
\end{equation}
whence \(g \in D \).

We conclude from (6.3) and (6.4) that \(Q \) is the inverse to \(-G\). Since \(G \) is self-adjoint it follows that \(Q \) is self-adjoint too.

The Lebesgue dominated convergence theorem implies that \(D(A) \subset D(Q) \) hence by (3.12) \(D(A) \subset D(Q) \). Now, (2.9) and (6.3) give \(Qf = \frac{1}{2} \Delta f \) for \(f \in D(A) \).

Recapitulating this discussion we can make the following statement:
The symmetric operator \(\frac{1}{2} \Delta \) given on \(D(A) \) has \(Q = G^{-1} \) as its self-adjoint extension.

It remains to prove asymptotic formulas (1.1) and (1.2).

For the proof of (1.1) let \(U_\delta = \{ x \in U : |x - z| \geq \delta \text{ for } z \notin U \} \). It is clear that \(|U_\delta| |U|^{-1} \rightarrow 1 \) with \(\delta \rightarrow 0^+ \). Property 8 of Section 3 gives for \(x \in U_\delta \) and \(t \leq \delta^2/k \)
\begin{equation}
0 \leq (2\pi t)^{-ik} - q(t, x, x) \leq (2\pi t)^{-ik} \exp \left(-\frac{\delta^2}{2t} \right).
\end{equation}

Since \(0 \leq q(t, x, y) \leq p(t, x, y) \) we have for \(x \in U \setminus U_\delta \) and \(t \leq \delta^2/k \)
\begin{equation}
0 \leq (2\pi t)^{-ik} - q(t, x, x) \leq (2\pi t)^{-ik}.
\end{equation}

Integrating (6.5) over \(U_\delta \) and (6.6) over \(U \setminus U_\delta \) we obtain
\begin{align*}
0 & \leq |U|(2\pi t)^{-ik} - \int_U q(t, x, x) \, dx \\
& < |U_\delta|(2\pi t)^{-ik} \exp \left(-\frac{\delta^2}{2t} \right) + |U \setminus U_\delta|(2\pi t)^{-ik},
\end{align*}

hence for \(t \leq \delta^2/k \)
\begin{equation}
0 \leq 1 - \frac{(2\pi t)^{ik}}{|U|} \int_U q(t, x, x) \, dx \leq \exp \left(-\frac{\delta^2}{2t} \right) + \left(1 - \frac{|U_\delta|}{|U|} \right).
\end{equation}

Now let \(t = \delta^3 \); then, for small \(t \), \(t = \delta^3 \leq \delta^2/k \) and therefore
\begin{equation}
\int_U q(t, x, x) \, dx \approx \frac{|U|}{(2\pi t)^{ik}} \quad \text{as } t \to 0^+.
\end{equation}

This and (5.2) give
\begin{equation}
\sum_{j=1}^{\infty} e^{-t/\delta_j} \approx \frac{|U|}{(2\pi t)^{ik}} \quad \text{for } t \to 0^+.
\end{equation}
The Tauberian theorem ([14], p. 192) gives for \(\lambda \to \infty \)

\[
\sum_{-\mu_j < \lambda} 1 \simeq \frac{|U| \lambda^k}{(2\pi)^k \Gamma(\frac{1}{2} k + 1)}.
\]

Substituting \(\lambda = -\mu_n \) we obtain (1.1).

The proof of (1.2) is now easy. Let \(x \in U \) be fixed and let \(\delta \) be such that \(x \in U_\delta \); then by (6.5) we obtain

\[
q(t, x, x) \simeq (2\pi t)^{-k}, \quad t \to 0_+,
\]

whence again by (5.2)

\[
\sum_{j=1}^\infty e^{-t/4} q_j^2(x) \simeq (2\pi t)^{-k}.
\]

The same Tauberian theorem gives for \(\lambda \to \infty \)

\[
\sum_{-\mu_j > \lambda} q_j^2(x) \simeq \frac{\lambda^k}{(2\pi)^k \Gamma(\frac{1}{2} k + 1)}.
\]

Substituting \(\lambda = -\mu_n \) and then applying (1.1) we obtain (1.2).

References