Zuzanna Bober 1 (ABG), Piotr Bar 2 (ABG), Grzegorz Pasternak 3 (ABG), Sabina Galiniak 4 (ABDFG), Dorota Bartusik-Aebisher 4 (ABDFG), Rafał Filip 3 (ABDFG), David Aebisher 5 (ABDFG)

Infliximab MRI relaxation time in solution

1 Department of Electroradiology, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
2 Clinical Department of Pathomorphology, Clinical Hospital No. 2, Rzeszów, Poland
3 Department of Gastroenterology, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
4 Department of Biochemistry and General Chemistry, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland
5 Department of Photomedicine and Physical Chemistry, Faculty of Medicine, University of Rzeszów, Rzeszów, Poland

ABSTRACT

Introduction. The use of Quantitative Magnetic Resonance Imaging to drug monitoring in vitro or in vivo can provides a powerful means to map the effects of drugs on tissue activity.

Aim. The purpose of this study was to measure relaxation time of antibody phantom. For this purpose, infliximab sample was used.

Material and methods. The selected methods to detect relaxation time of antibody was Magnetic Resonance Imaging technique. We detected spin-lattice (T_1) relaxation time and discuss differences where compare to water.

Results. The measurements of spin-lattice (T_1) relaxation time showed significant differences. The results obtained in phantom indicate that we can use this result for measurements of relaxation time in vitro.

Conclusion. Infliximab is approved for severe cases of rheumatoid arthritis, together with methotrexate, for pronounced psoriasis and psoriasis-arthritis, ankylosing spondylitis as well as for chronic inflammatory bowel disease. We conclude, that Quantitative Magnetic Resonance Imaging can be used to monitor drug effects.

Keywords. infliximab, magnetic resonance imaging, relaxation time
Material and methods

We have studied Infliximab using Magnetic Resonance Imaging techniques. Measurements of spin-lattice T₁ relaxation time were made using a 1.5 Tesla Magnetic Resonance Imager (Optima MR360 Advance, General Electric Healthcare). Three prepared phantoms: (1) infliximab solution, (2) water, (3) glue were placed in the magnet. The samples were then scanned using Fast Spin Echo sequences with a coronal projection using a 4-channel small flex coil with a matrix size of 320 × 224, a field of view of 10 cm × 10 cm, and a slice thickness of 2 mm. The T₁ relaxation time was measured using the saturation recovery method with a Time to Echo (TE) TE=3 ms and Time to Repetition (TR) TR= 50 ms, 100 ms, 200 ms, 300 ms, 500 ms, 700 ms, 1000 ms, 1500 ms, 2000 ms, 2500 ms, 3000 ms, 5000 ms, 10 000 ms and 15000 ms. Based on the generated image sequence, the MRI signal was collected from the region of interest that covered the same area in each sample.

Results

Here, we have investigated the QMRI response to infliximab. Infliximab is widely applied as a pharmacological drug. Pharmacological QMRI can tracks signal changes that reflect drug challenges and may be considered as a surrogate for changes in the gastroenterological processes. The QMRI images of 1) infliximab solution, 2) water and 3) glue showed the homogenous solutions of (1-3) phantoms. We observed that the relaxation time is increasing in direction (3) glue> (2) infliximab and (3) water. The changes in values due to proton density in phantoms caused changes in relaxivity values. The region of interest (ROI) in phantoms was selected in the same area in samples. The images became darker due to shorter T₁ values, that were associate with the loss of protons, decrease in water concentrations within the ROI. The measured values of relaxation time of (1), (2) and (3) phantoms are presented in Table 1.

<table>
<thead>
<tr>
<th>Relaxation time</th>
<th>T₁-Water</th>
<th>T₁-Infliximab</th>
<th>T₁-Glue</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3390</td>
<td>2545</td>
<td>2790</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Infliximab is monoclonal antibody which contains a human constant region and a mouse-derived murine variable region. Infliximab is specific for human tumor necrosis factor alpha (TNFα). There is a rapid increase in the applications of MRI for molecular and cellular imaging in vivo and ex vivo. However, to study the cellular details of drug treatment, high resolution MR and long acquisition time are needed. MRI shows to be a useful technique for evaluation of infliximab. Studies in recent years have shown that MRI is essential for assessment of drug response. Therefore, in recent years, the use of MRI in patients with Crohn's disease has increased.¹⁻⁴⁶ MRI is sensitive to the anti-inflammatory effects of infliximab.¹ MRI of Crohn's disease patients identify predictors of deep remission on long-term maintenance anti-tumor necrosis factor α therapy.²⁻¹⁸ Magnetic resonance diffusion-weighted imaging was used after infliximab induction therapy in patients with Crohn's disease.¹⁹ Tumor necrosis factor antagonists can induce mucosal healing in patients with Crohn's disease.²⁰ Anti-tumor necrosis factor therapy heals many Crohn's disease.²¹,²² To evaluate the role of pelvic MRI in diagnosis and assessment of combined surgical and infliximab treatment of Crohn's disease.²³ MRI is used to assess the outcome of infliximab therapy in patients with perianal fistulizing Crohn's disease.²⁴,²⁵ Infliximab therapy, including loss of enhancing nodules and loss of meningeal enhancement.²⁶ MRI of infliximab, was used to evaluate the frequency and location of erosions.²⁷ MRI seems to be interesting for objective therapeutic evaluation and monitoring of patients with spondyloarthropathy.²⁷,²⁸ MRI examination was helpful in documenting the effect of treatment over this short period.²⁹ Patients who received infliximab therapy showed a decrease in spinal inflammation as detected by MRI.⁴⁰ In refractory rheumatoid arthritis patients, the addition of infliximab therapy may result in clinical, laboratory and magnetic resonance imaging improvement.⁴¹ MRI may have significant implications for the optimal use of expensive biologic therapies.⁴²⁻⁴⁴ MRI and clinical evaluation were performed before and after infliximab infusions.⁴⁵,⁴⁶

Conclusion

Infliximab is approved for severe cases of rheumatoid arthritis, together with metotrexate, for pronounced psoriasis and psoriasis-arthritis, ankylosing spondylitis as well as for chronic inflammatory bowel disease. We conclude, that QMRI can be used to monitor drug effects.
Acknowledgment

Dorota Bartusik-Aebisher acknowledges support from the National Center of Science NCN (New drug delivery systems-MRI study, Grant OPUS-13 number 2017/25/B/ST4/02481).

References

17. Yonenaga T, Sacki H, Nakagawa H, et al. Four cases of Japanese patients with psoriatic arthritis in whom effective treatments by anti-tumor necrosis factor-a drugs were evaluated by magnetic resonance imaging together with improvement of skin lesions. *J Dermatol*. 2015;42(1):49-55.

24. Karmiris K, Bielen D, Vanbeckevoort D, et al. Long-term monitoring of infliximab therapy for perianal fistulizing...

