Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 38 | 8 | 6411-6416
Tytuł artykułu

Room temperature in situ chemical synthesis of Fe3O4/graphene

Treść / Zawartość
Warianty tytułu
Języki publikacji
A simple, cost-effective, efficient, and green approach to synthesize iron oxide/graphene (Fe3O4/rGO) nanocomposite using in situ deposition of Fe3O4 nanoparticles on reduced graphene oxide (rGO) sheets is reported. In the redox reaction, the oxidation state of iron(II) is increased to iron(III) while the graphene oxide (GO) is reduced to rGO. The GO peak is not observed in the X-ray diffraction (XRD) pattern of the nanocomposite, thus providing evidence for the reduction of the GO. The XRD spectra do have peaks that can be attributed to cubic Fe3O4. The field emission scanning electron microscopy (FESEM) images show Fe3O4 nanoparticles uniformly decorating rGO sheets. At a low concentration of Fe2+, there is a significant increase in the intensity of the FESEM images of the resulting rGO sheets. Elemental mapping using energy dispersive X-ray (EDX) analysis shows that these areas have a significant Fe concentration, but no morphological structure could be identified in the image. When the concentration of Fe2+ is increased, the Fe3O4 nanoparticles are formed on the rGO sheets. Separation of the Fe3O4/rGO nanocomposite from the solution could be achieved by applying an external magnetic field, thus demonstrating the magnetic properties of the nanocomposite. The Fe3O4 particle size, magnetic properties, and dispersibility of the nanocomposite could be altered by adjusting the weight ratio of GO to Fe2+ in the starting material.
Słowa kluczowe
Opis fizyczny
  • Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia ,
  • Low Dimensional Materials Research Centre, Department of Physics, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
  • School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
  • School of Chemical and Environmental Engineering, Faculty of Engineering, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
  • 1. Singh, V.& Joung, D.& Zhai, L.& Das, S.& Khondaker, S.I.& Seal, S., "Graphene based materials: past, present and future", Progress in Material Science, vol. 56, 2011, p.1178-1271
  • 2. Huang, X.& Qi, X.& Boey, F.& Zhang, H., "Graphene-based composites", Chemical Society Reviews, vol. 41, 2011, p.666-686
  • 3. Chen, X.M.& Jiang, Y.Q.& Wang, Y.R.& Chen, X., "Graphene and graphene-based nanomaterials: the promising materials for bright future of electroanalytical chemistry", Analyst, vol. 136, 2011, p.4631-4640
  • 4. Kong, Y.& Zhao, D.L.& Bai, L.Z.& Shen, Z.M., "Easy synthesis and characterization of high quality graphene sheets produced from mesocarbon microbeads", Material Letters, vol. 65, 2011, p.2739-2741
  • 5. Cheng, Q.& Tang, J.& Ma, J.& Zhang, H.& Shinya, N.& Qin, L.C., "Graphene and nanostructured MnO2 composite electrodes for supercapacitors", Carbon, vol. 49, 2011, p.2917-2925
  • 6. Qu, Q.& Yang, S.& Feng, X., "2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors", Advanced Materials, vol. 23, 46, 2011, p.5578-5580
  • 7. Lee, Y.R.& Song, M.S.& Lee, K.M.& Kim, I.Y.& Hwang, S.J., "Synthesis and electrochemical characterization of reduced graphene oxide-manganese oxide nanocomposites", Journal of Electrochemical Science and Technology, vol. 2, 2011, p.1-7
  • 8. Wu, Z.S.& Zhou, G.& Yin, L.C.& Ren, W.& Li, F.& Cheng, H.M., "Graphene/metal oxide composite electrode materials for energy storage", Nano Energy, vol. 1, 2012, p.107-131
  • 9. Ghosh, D.& Chandra, S.& Chakraborty, A.& Ghosh, S.K.& Pramanik, P., "A novel graphene oxide-para amino benzoic acid nanosheet as effective drug delivery system to treat drug resistant bacteria", International Journal of Pharmaceutical Science and Drug Research, vol. 2, 2010, p.127-133
  • 10. Li, B.& Cao, H.& Yin, G.& Lu, Y.& Yin, J., "Cu2O@reduced graphene oxide composite for removal of contaminants from water and supercapacitors", Journal of Material Chemistry, vol. 21, 2011, p.10645-10648
  • 11. Zhang, K.& Dwivedi, V.& Chi, C.& Wu, J., "Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water", Journal of Hazardous Material, vol. 182, 2010, p.162-168
  • 12. Chandra, V.& Park, J.& Chun, Y.& Lee, J.W.& Hwang, I.C.& Kim, K.S., "Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal", American Chemical Society, vol. 4, 2010, p.3979-3986
  • 13. Liu, X.& Pan, L.& Zha, Q.& Lv, T.& Zhu, G.& Chen, T.& Lu, T.& Sun, Z.& Sun, C., "UV-assisted photocatalytic synthesis of ZnO-reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI)", Chemical Engineering Journal, vol. 183, 2012, p.238-243
  • 14. Sun, C.L.& Lee, H.H.& Yang, J.M.& Wu, C.C., "The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites", Biosensors and Bioelectronics, vol. 26, 2011, p.3450-3455
  • 15. Sun, C.L.& Lee, H.H.& Ying, J.M.& Wu, C.C., "The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites", Biosensors and Bioelectronics, vol. 26, 2011, p.3450-3455
  • 16. Lu, W.& Luo, Y.& Chang, G.& Sun, X., "Synthesis of functional SiO2-coated graphene oxide nanosheets decorated with Ag nanoparticles for H2O2 and glucose detection", Biosensors and Bioelectronics, vol. 26, 2011, p.4791-4797
  • 17. Fan, Y.& Lu, H.T.& Liu, J.H.& Yang, C.P.& Jing, Q.S.& Zhang, Y.X.& Yang, X.K.& Huang, K.J., "Hydrothermal preparation and electrochemical sensing properties of TiO2–graphene nanocomposite", Colloids and Surfaces B, vol. 83, 2010, p.78-82
  • 18. Kim, D.H.& Yun, Y.S.& Jin, H.J., "Difference of dispersion behavior between graphene oxide and oxidized carbon nanotubes in polar organic solvents", Current Applied Physics, vol. 12, 2012, p.637-642
  • 19. Dreyer, D.R& Park, S.& Bielawsk, C.W.& Ruoff, R.S., "The chemistry of graphene oxide", Chemical Society Reviews, vol. 39, 2010, p.228-240
  • 20. Liu, J.& Jeong, H.& Liu, J.& Lee, K.& Park, J.Y.& Ahn, Y.H.& Lee, S., "Reduction of functionalized graphite oxides by trioctylphosphine in non-polar organic solvents", Carbon, vol. 48, 2010, p.2282-2289
  • 21. Singh, V.K.& Pantra, M.K.& Manoth, M.& Gowd, G.S.& Vadera, S.R.& Kumar, N., "In situ synthesis of graphene oxide and its composites with iron oxide", New Carbon Materials, vol. 24, 2009, p.147-152
  • 22. Zhan, Y.& Meng, F.& Yang, X.& Liu, X., "Magnetite-graphene nanosheets (GNs)/poly(arylene ether nitrile) (PEN): fabrication and characterization of a multifunctional nanocomposite film", Colloids and Surfaces A, vol. 390, 1–3, 2011, p.112-119
  • 23. Zhan, Y.& Meng, F.& Lei, Y.& Zhao, R.& Zhong, J.& Liu, X., "One-pot solvothermal synthesis of sandwich-like graphene nanosheets/Fe3O4 hybrid material and its microwave electromagnetic properties", Materials Letters, vol. 65, 2011, p.1737-1740
  • 24. Wu, H.& Gao, G.& Zhou, X.& Zhang, Y.& Guo, S., "Control on the formation of Fe3O4 nanoparticles on chemically reduced graphene oxide surfaces", CrystEngComm, vol. 14, 2, 2012, p.499-504
  • 25. He, F.& Fan, J.& Ma, D.& Zhang, L.& Leung, C.& Chan, H.L., "The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding", Carbon, vol. 48, 2010, p.3139-3144
  • 26. Lu, D.& Zhang, Y.& Wang, L& Lin, S.& Wang, C.& Chen, X., "Sensitive detection of acetaminophen based on Fe3O4 nanoparticles-coated poly(diallyldimethylammonium chloride)-functionalized graphene nanocomposite film", Talanta, vol. 88, 2012, p.181-186
  • 27. He, H.& Gao, C., "Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles", Applied Materials and Interfaces, vol. 2, 2010, p.3201-3210
  • 28. Lim, H.N.& Huang, N.M.& Lim, S.S.& Harrison, I.& Chia, C.H., "Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth", International Journal of Nanomedicine, vol. 6, 2011, p.1817-1823
  • 29. Xue, Y.& Chen, H.& Yu, D.& Wang, S.& Yardeni, M.& Dai, Q.& Guo, M.& Liu, Y.& Lu, F.& Qu, J.& Dai, L., "Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications", Chemical Communications, vol. 47, 2011, p.11689-11691
  • 30. Lim, H.N.& Huang, N.M.& Loo, C.H., "Facile preparation of graphene-based chitosan films: enhanced thermal, mechanical and antibacterial properties", Journal of Non-Crystalline Solids, vol. 358, 2012, p.525-530
  • 31. Wang, X.& Tian, H.& Yang, Y.& Wang, H.& Wang, S.& Zhang, W.& Liu, Y., "Reduced graphene oxide/CdS for efficiently photocatalystic degradation of methylene blue", Journal of Alloys and Compounds, vol. 524, 2012, p.5-12
  • 32. Lim, H.N.& Nurzulaikha, R.& Harrison, I.& Lim, S.S.& Tan, W.T.& Yeo, M.C.& Yarmo, M.A., "Preparation and characterization of tin oxide, SnO2 nanoparticles decorated graphene", Ceramics International, vol. 38, 2012, p.4209-4216
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.