Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2013 | 337-338 | Complete | 99-113
Tytuł artykułu

Petrogenesis and mantle source characteristics of Quaternary alkaline mafic lavas in the western Carpathian–Pannonian Region, Styria, Austria

Treść / Zawartość
Abstrakt, słowa kluczowe
Źródło
Twórcy
Bibliografia
Dodatkowe informacje
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the Styrian Basin, i.e. the westernmost part of the Carpathian–Pannonian Region (CPR), the Pliocene to Quaternary post-extensional phase was accompanied by eruption of alkaline mafic magmas, some of which carry mantle xenoliths. The rocks range from nephelinites (Stradnerkogel and Waltrafelsen) to (predominant) basanites and ne-basanites (Klöch and Steinberg). They have high Ce/Pb, Nb/U and Nb/La ratios reflecting asthenospheric mantle source characteristics with negligible crustal contamination, differentiation en route to the surface and/or interaction with the lithospheric mantle. The calculated depths of magma generation are >100km for the basanites and ne-basanites in comparison to 135km or more for the nephelinites, implying an origin in the garnet stability field. The temperatures of mantle melting for the basanites and ne-basanites are from ≈1400 to 1500°C.Modeling calculation using the most primitive Styrian sample (a basanite) gives a mantle potential temperature (Tp) of 1466°C similar to average Tp of upper mantle sources beneath MORB indicating that the Styrian magmas were generated from asthenospheric mantle sources at ambient temperatures that preclude plume activity beneath the study area.The nephelinites have elevated Zr/Hf (51–67) and La/YbN (29–31) ratios and negative K and Ti anomalies on the PM-normalized multi-element diagrams, similar to those of carbonatites. These characteristics suggest that their source had experienced enrichment by carbonatitic liquids; an inference supported by their estimated content of ~5% CO2. By contrast, the trace element signatures of the basanites and ne-basanites suggest that their asthenospheric source, which experienced higher degrees of melting than the nephelinites, was nearly unaffected by carbonatite metasomatism. From the overall similarity of the trace element distribution patterns and the narrow range of their SrNd isotopic ratios, all the rocks can be related to a similar (OIB-like) asthenospheric mantle source, approximating the European Asthenospheric Reservoir (EAR-type).
Czasopismo
Chemical Geology , ISSN 00092541
Rocznik
Tom
Numer
Strony
99-113
Opis fizyczny
Twórcy
autor
  • Department of Lithospheric Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria , Shehata.ali@mu.edu.eg
  • Geology Department, Faculty of Science, Minia University, El-Minia, Egypt
  • Department of Lithospheric Research, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
  • School of GeoSciences, University of Edinburgh EH9 3JW, UK
Bibliografia
  • 1. Albarède, F., "How deep do common basaltic magmas form and differentiate?", Journal of Geophysical Research, vol. 97, 1992, p.10997-11009
  • 2. Ali, Sh.& Ntaflos, Th., "Petrogenesis of Pliocene Alkaline Volcanic Rocks from Southeastern Styrian Basin, Austria", Geophysical Research Abstracts, Vol. 11—EGU—General Assembly 2009, Vienna, Austria, 2009
  • 3. Ali, Sh.& Ntaflos, Th., "Comparative petrological studies of some alkaline basalts, western Pannonian Basin, Austria", Geophysical Research Abstracts, Vol. 12—EGU—General Assembly 2010, Vienna, Austria, 2010
  • 4. Ali, Sh.& Ntaflos, Th., "Alkali basalts from Burgenland, Austria: petrological constraints on the origin of the westernmost magmatism in the Carpathian–Pannonian Region", Lithos, vol. 121, 2011, p.176-188
  • 5. Anders, E.& Grevesse, N., "Abundances of the elements: meteoritic and solar", Geochimica et Cosmochimica Acta, vol. 53, 1989, p.197-214
  • 6. Bali, E.& Szabó, Cs& Vaseli, O.& Török, K., "Carbonate-bearing melt pockets in upper mantle xenoliths from the Pannonian Basin", European carbonatites: implications for the sub-European mantle and their geohazard potential- Abstarct volume 57, 2002
  • 7. Balogh, K.& Ebner, F.& Ravasz, Cs, "K/Ar alter tertiärer Vulcanite de südöstlischen Steiermark und des südlischen Burgenlands", Császár, G.& Daurer, A. (Eds.), Jubiläumsschrift 20 Jahre Geologischen Zusammenarbeit Österreich-Ungarn Lobitzer, 1994, p.55-72
  • 8. Cebriá, J.M.& Wilson, M., "Cenozoic mafic magmatism in western central Europe: a common European asthenospheric reservoir?", Terra Nova, vol. 7, 1995, p.162
  • 9. Chauvel, C.& Hofmann, A.W.& Vidal, P., "HIMU-EM: The French Polynesian connection", Earth and Planetary Science Letters, vol. 110, 1992, p.99-119
  • 10. Chen, L.-H.& Zeng, G.& Jiang, S.-Y.& Hofmann, A.W.& Xu, X.-S., "Sources of Anfengshan basalts: subducted lower crust in the Sulu UHP belt, China", Earth and Planetary Science Letters, vol. 286, 2009, p.426-435
  • 11. Collerson, K.D.& Williams, Q.& Ewart, A.E.& Murphy, D.T., "Origin of HIMU and EM-1 domains sampled by ocean island basalts, kimberlites and carbonatites: the role of CO2-fluxed lower mantle melting in thermochemical upwellings", Physics of the Earth and Planetary Interiors, vol. 181, 2010, p.112-131
  • 12. Coltorti, M.& Bonadiman, C.& Faccini, B.& Ntaflos, T.& Siena, F., "Slab melt and intraplate metasomatism in Kapfenstein mantle xenoliths (Styrian Basin, Austria)", Lithos, vol. 94, 2007, p.66-89
  • 13. Dasgupta, R.& Hirschmann, M.M.& Smith, N.D., "Partial melting experiments of peridotitie+CO2 at 3 GPa and genesis of alkalic ocean island basalts", Journal of Petrology, vol. 48, 2007, p.2093-2124
  • 14. Dasgupta, R.& Jackson, M.G.& Lee, C.-T., "Major element chemistry of ocean island basalts—conditions of mantle melting and heterogeneity of mantle source", Earth and Planetary Science Letters, vol. 289, 2010, p.377-392
  • 15. Demény, A.& Dallai, L.& Frezzotti, M.-L.& Vennemann, T.W.& Embey-Isztin, A.& Dobosi, G.& Nagy, G., "Origin of CO2 and carbonate veins in mantle-derived xenoliths in the Pannonian Basin", Lithos, vol. 117, 2010, p.172-182
  • 16. Dobosi, G.& Fodor, R.V.& Goldberg, S.A., "Late-Cenozoic alkalic basalt magmatism in northern Hungary and Slovakia: petrology, source compositions and relationship to tectonics", Acta Vulcanologica, vol. 7, 1995, p.199-207
  • 17. Dobosi, G.& Schultz-Güttler, R.& Kurat, G.& Kracher, A., "Pyroxene chemistry and evolution of alkali basaltic rocks from Burgenland and Styria, Austria", Mineralogy and Petrology, vol. 43, 1991, p.275-292
  • 18. Dombrádi, E.& Sokoutis, D.& Bada, G.& Cloetingh, S.& Horváth, F., "Modelling recent deformation of the Pannonian lithosphere: lithospheric folding and tectonic topography", Tectonophysics, vol. 484, 2010, p.103-118
  • 19. Downes, H.& Seghedi, I.& Szakacs, A.& Dobosi, G.& Vaselli, O.& James, D.E.& Rigby, I.J.& Thirlwall, M.F.& Rex, D.& Pécskay, Z., "Petrology and geochemistry of late Tertiary/Quaternary mafic alkaline volcanism in Romania", Lithos, vol. 35, 1995, p.65-81
  • 20. Ebner, F.& Sachsenhofer, R.F., "Palaeogeography, subsidence and thermal history of the Neogene Styrian Basin (Pannonian basin system, Austria)", Tectonophysics, vol. 242, 1995, p.133-150
  • 21. Embey-Isztin, A.& Dobosi, G., "Mantle source characteristics for Miocene–Pleistocene alkali basalts, Carpathian–Pannonian Region: a review of trace elements and isotopic composition", Downes, H.& Vaselli, O. (Eds.), Neogene and related magmatism in the Carpatho-Pannonian Region, Acta Vulcanologica, vol. 7, 2, 1995, p.155-166
  • 22. Embey-Isztin, A.& Downes, H.& James, D.E.& Upton, B.G.J.& Dobosi, G.& Ingram, G.A.& Harmon, R.S.& Scharbert, H.G., "The petrogenesis of Pliocene alkaline volcanic rocks from the Pannonian Basin, Eastern Central Europe", Journal of Petrology, vol. 34, 1993, p.317-343
  • 23. Fitton, J.G.& James, D.& Leeman, W.P., "Basic magmatism associated with Late Cenozoic extension in the Western United States: compositional variations in space and time", Journal of Geophysical Research, vol. 96, 1991, p.13693-13711
  • 24. Haase, K.M.& Renno, A.D., "Variation of magma generation and mantle sources during continental rifting observed in Cenozoic lavas from the Eger Rift, Central Europe", Chemical Geology, vol. 257, 2008, p.192-202
  • 25. Halliday, A.N.& Lee, D.-C.& Tommasini, S.& Davies, G.R.& Paslick, C.R.& Fitton, J.D.& James, D.E., "Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle", Earth and Planetary Science Letters, vol. 133, 1995, p.379-395
  • 26. Harangi, S., "Neogene magmatism in the Alpine–Pannonian Transition Zone—a model for melt generation in a complex geodynamic setting", Acta Vulcanologica, vol. 13, 2001, p.25-39
  • 27. Harangi, S.& Downes, H.& Seghedi, I., "Tertiary-Quaternary subduction processes and related magmatism in the Alpine-Mediterranean region", Gee, D.G.& Stephenson, R.A. (Eds.), European Lithosphere Dynamics, Geological Society of London Memoir, vol. 32, 2006, p.167-190
  • 28. Harangi, S.& Lenkey, L., "Genesis of the Neogene to Quaternary volcanism in the Carpathian–Pannonian region: role of subduction, extension, and mantle plume", Beccaluva, L.& Bianchini, G.& Wilson, M. (Eds.), Cenozoic Volcanism in the Mediterranean Area, Geological Society of America Special Paper 418, 2007, p.67-92
  • 29. Harangi, S.& VaseIli, O.& Tonarini, S.& Szabó, Cs& Harangi, R.& Coradossi, N., "Petrogenesis of Neogene extension-related alkaline volcanic rocks of the Little Hungarian Plain volcanic field (Western Hungary)", Downes, H.& VaseIli, O. (Eds.), Neogene and related magmatism in the Carpatho-Pannonian Region, Acta Vulcanologica, vol. 7, 2, 1995, p.173-187
  • 30. Hart, W.K.& Wolde, G.C.& Walter, R.C.& Mertzman, S.A., "Basaltic volcanism in Ethiopia: constraints on continental rifting and mantle interactions", Journal of Geophysical Research, vol. 94, 1989, p.7731-7748
  • 31. Herzberg, C.& Asimow, P.D., "Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation", Geochemistry, Geophysics, Geosystems, vol. 9, 2008
  • 32. Hirose, K., "Partial melt compositions of carbonated peridotite at 3GPa and role of CO2 in alkali–basalt magma generation", Geophysical Research Letters, vol. 24, 1997, p.2837-2840
  • 33. Hirose, K.& Kushiro, I., "Partial melting of dry peridotites at high pressures: determination of composition of melts segregated from peridotite using aggregate of diamonds", Earth and Planetary Science Letters, vol. 114, 1993, p.477-489
  • 34. Hoernle, K.& Tilton, G.& Le Bas, M.J.& Duggen, S.& Garbe-Schonberg, D., "Geochemistry of oceanic carbonatites compared with continental carbonatites: mantle recycling of oceanic crustal carbonate", Contributions to Mineralogy and Petrology, vol. 142, 2002, p.520-542
  • 35. Hofmann, A.W., "Mantle geochemistry: the message from oceanic volcanism", Nature, vol. 385, 1997, p.219-229
  • 36. Hofmann, A.W., "Sampling mantle heterogeneity through oceanic basalts: isotopes and trace elements", Carlson, R.W. (Eds.), The Mantle and Core, Treatise in Geochemistry, 2004, p.61-103
  • 37. Hofmann, A.W.& Jochum, K.P.& Seufert, M.& White, W.M., "Nb and Pb in oceanic basalts, new constraints on mantle evolution", Earth and Planetary Science Letters, vol. 79, 1986, p.33-45
  • 38. Horváth, F.& Bada, G.& Szafián, P.& Tari, G.& Ádám, A.& Cloetingh, S.A.P.L., "Formation and deformation of the Pannonian basin: constraints from observational data", Gee, D.G.& Stephenson, R.A. (Eds.), European Lithosphere Dynamics, Geological Society, London, Memoirs, vol. 32, 2006, p.191-206
  • 39. Huismans, R.S.& Podladchikov, Y.Y.& Cloetingh, S.A.P.L., "The Pannonian basin: dynamic modelling of the transition from passive to active rifting", European Geosciences Union Stephan Mueller Special Publication Series, vol. 3, 2002, p.41-63
  • 40. Jung, C.& Jung, S.& Hoffer, E.& Berndt, J., "Petrogenesis of tertiary mafic alkaline magmas in the Hocheifel, Germany", Journal of Petrology, vol. 47, 8, 2006, p.1637-1671
  • 41. Keshav, S.& Gudfinnsson, G.H.& Sen, G.& Fei, Y.-W., "High-pressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean–island basalts", Earth and Planetary Science Letters, vol. 223, 2004, p.365-379
  • 42. Kunzmann, T., 1989. Rhönit: Mineralchemie, Paragenese und Stabilität in alkalibasaltischen Vulkaniten (Ein beitrag zur Mineralogenese der Rhönit-Änigmatit-Mischkristallgruppe). Doctoral dissertation. Ludwig-Maximillians-Universität, München, Germany, 152 pp.
  • 43. Le Bas, M.J.& Le Maitre, R.W.& Streckeisen, A.& Zanettin, B., "A chemical classification of volcanic rocks based on the total alkali-silica diagram", Journal of Petrology, vol. 27, 1986, p.745-750
  • 44. Lee, C.-T.& Luffi, P.& Plank, T.& Dalton, H.& Leeman, W.P., "Constraints on the depths and temperatures of basaltic magma generation on Earth and other terrestrial planets using new thermobarometers for mafic magmas", Earth and Planetary Science Letters, vol. 279, 2009, p.20-33
  • 45. Lustrino, M.& Wilson, M., "The circum-Mediterranean anorogenic Cenozoic igneous province", Earth-Science Reviews, vol. 81, 2007, p.1-65
  • 46. McDonough, W.F.& Sun, S.S., "The composition of the Earth", Chemical Geology, vol. 120, 1995, p.223-253
  • 47. Morimoto, N.& Fabries, J.& Ferguson, A.K.& Ginzburg, I.V.& Ross, M.& Seifert, F.A.& Zussman, J.& Aoki, K.& Gottardi, G., "Nomenclature of pyroxenes", Mineralogical Magazine, vol. 52, 1988, p.535-550
  • 48. Pearce, T.H., "Olivine fractionation equation for basaltic and ultrabasic liquids", Nature, vol. 276, 1978, p.771-774
  • 49. Pécskay, Z.& Lexa, J.& Szakacs, A.& Balogh, K.& Shegedi, I.& Konecy, V.& Kovacs, M.& Marton, E.& Kaliciak, M.& Szeki-Fux, V.& Poka, T.& Gyarmati, P.& Edelstein, O.& Rosu, E.& Zec, B., "Space and time distribution of Neogene–Quaternary volcanism in the Carpatho-Pannonian region", Downes, H.& Vaselli, O. (Eds.), Neogene and related volcanism in the Carpatho-Pannonian Region, Acta Volcanologica Special Issue, vol. 7, 1995, p.15-28
  • 50. Pécskay, Z.& Lexa, J.& Szakács, A.& Seghedi, I.& Balogh, K.& Konečný, V.& Zelenka, T.& Kovacs, M.& Póka, T.& Fülöp, A.& Márton, E.& Panaiotu, C.& Cvetković, V., "Geochronology of Neogene magmatism in the Carpathian arc and Intra-Carpathian area: a review", Geologica Carpathica, vol. 57, 2006, p.511-530
  • 51. Putirka, K.D., "Mantle potential temperatures at Hawaii, Iceland, and the mid- ocean ridge system, as inferred from olivine phenocrysts: evidence for thermally driven mantle plumes", Geochemistry, Geophysics, Geosystems, vol. 6, 2005
  • 52. Putirka, K.D.& Perfit, M.& Ryerson, F.J.& Jackson, M.G., "Ambient and excess mantle temperatures, olivine thermometry, and active vs. passive upwelling", Chemical Geology, vol. 241, 2007, p.177-206
  • 53. Royden, L.H., "Evolution of retreating subduction boundaries formed during continental collision", Tectonics, vol. 12, 1993, p.629-638
  • 54. Sachsenhofer, R.F.& Lankreijer, A.& Cloetingh, S.A.P.L.& Ebner, F., "Subsidence analysis and quantitative basin modeling in the Styrian Basin (Pannonian Basin system, Austria)", Tectonophysics, vol. 272, 1997, p.175-196
  • 55. Salters, V.J.M.& Hart, S.R.& Panto, G., "Origin of late Cenozoic volcanic rocks of the Carpathian Arc, Hungary", Royden, L.H.& Horvath, F. (Eds.), The Pannonian Basin; a study in Basin Evolution, American Association of Petroleum Geologists Memoir, vol. 45, 1988, p.279-292
  • 56. Scarrow, J.H.& Cox, K.G., "Basalts generated by decompressive adiabatic melting of a mantle plume: a case study from the Isle of Skye, NW Scotland", Journal of Petrology, vol. 36, 1, 1995, p.3-22
  • 57. Schmid, S.M.& Bernoulli, D.& Fügenschuh, B.& Matenco, L.& Schefer, S.& Schuster, R.& Tischler, M.& Ustaszewski, K., "The Alpine–Carpathian–Dinaridic orogenic system: correlation and evolution of tectonic units", Swiss Journal of Geosciences, vol. 101, 1, 2008, p.139-183
  • 58. Seghedi, I.& Downes, H., "Geochemistry and tectonic development of Cenozoic magmatism in the Carpathian–Pannonian region", Gondwana Research, vol. 20, 2011, p.655-672
  • 59. Seghedi, I.& Downes, H.& Szakacs, A.& Mason, P.R.D.& Thirlwall, M.F.& Rosu, E.& Pecskay, Z.& Marton, E.& Panaiotu, C., "Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis", Lithos, vol. 72, 2004, p.117-146
  • 60. Seghedi, I.& Downes, H.& Vaselli, O.& Szakács, A.& Balogh, K.& Pécskay, Z., "Post-collisional Tertiary–Quaternary mafic alkalic magmatism in the Carpathian–Pannonian region: a review", Tectonophysics, vol. 393, 2004, p.43-62
  • 61. Seghedi, I.& Maţenco, L.& Downes, H.& Mason, P.R.D.& Szakács, A.& Pécskay, Z., "Tectonic significance of changes in post-subduction Pliocene–Quaternary magmatism in the south east part of the Carpathian–Pannonian Region", Tectonophysics, 2010
  • 62. Smith, E.I.& Sánchez, A.& Walker, J.D.& Wang, K., "Geochemistry of mafic magmas in the Hurricane Volcanic Field, Utah: implications for small- and large scale chemical variability of the lithospheric mantle", Journal of Geology, vol. 107, 1999, p.433-448
  • 63. Thirlwall, M.F., "Pb isotopic and elemental evidence for OIB derivation from young HIMU mantle", Chemical Geology, vol. 139, 1997, p.51-74
  • 64. Thöni, M.& Miller, C.& Blichert-Toft, J.& Whitehouse, M.J.& Konzett, J.& Zanetti, A., "Timing of high-pressure metamorphism and exhumation of the eclogite type-locality (Kupplerbrunn–Prickler Halt, Saualpe, south-eastern Austria): constraints from correlations of the SmNd, LuHf, UPb and RbSr isotopic systems", Journal of Metamorphic Geology, vol. 26, 2008, p.561-581
  • 65. Tschegg, C.& Ntaflos, Th.& Seghedi, I.& Harangi, S.& Kosler, J.& Coltorti, M., "Paleogene alkaline magmatism in the South Carpathians (Poiana Ruscă, Romania): asthenosperic melts with geodynamic and lithospheric information", Lithos, vol. 120, 2010, p.393-406
  • 66. Wass, S.Y., "Multiple origins of clinopyroxene in alkalic basaltic rock", Lithos, vol. 12, 1979, p.115-132
  • 67. Weaver, B.L., "Trace element evidence for the origin of ocean–island basalts", Geology, vol. 19, 1991, p.123-126
  • 68. Wilson, M., "Igneous Petrogenesis", 1989, (450pp.)
  • 69. Wilson, M.& Downes, H., "Tertiary–Quaternary extension-related alkaline magmatism in Western and Central Europe", Journal of Petrology, vol. 32, 1991, p.811-849
  • 70. Wilson, M.& Downes, H., "Tertiary–Quaternary intra-plate magmatism in Europe and its relation to mantle dynamics", Gee, D.G.& Stephenson, R.A. (Eds.), European Lithosphere Dynamics, Geological Society of London, Memoirs, vol. 32, 2006, p.147-166
  • 71. Wilson, M.& Patterson, R., "Intra–plate magmatism related to short wavelength convective instabilities in the upper mantle: evidence from the Tertiary–Quaternary volcanic province of western and central Europe", Ernst, R.E.& Buchan, K.L. (Eds.), Mantle Plumes: Their Identification through Time, Geological Society of America Special Paper 352, 2001, p.37-58
  • 72. Zajacz, Z.& Kovács, I.& Szabó, C.& Halter, W.& Pettke, T., "Evolution of mafic alkaline melts crystallized in the uppermost lithospheric mantle: a melt inclusion study of olivine–clinopyroxenite xenoliths, northern Hungary", Journal of Petrology, vol. 48, 2007, p.853-883
  • 73. Zeng, G.& Chen, L.-H.& Xu, X.-S.& Jiang, S.-Y.& Hofmann, A.W., "Carbonated mantle sources for Cenozoic intra-plate alkaline basalts in Shandong, North China", Chemical Geology, vol. 273, 2010, p.35-45
  • 74. Zindler, A.& Hart, S., "Chemical geodynamics", Annual Review of Earth and Planetary Sciences, vol. 14, 1986, p.493-571
Kolekcja
Elsevier
Identyfikator YADDA
bwmeta1.element.elsevier-fc40b284-928c-3e55-a708-299d5d7d914f
Identyfikatory
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.