Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 16 | 7 | 4927-4937
Tytuł artykułu

A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle

Treść / Zawartość
Abstrakt, słowa kluczowe
Źródło
Twórcy
Bibliografia
Dodatkowe informacje
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a comprehensive review of two-phase ejector as an expansion device in vapor compression refrigeration cycle over the past two decades. It also covers research opportunities that are still open in the field of two-phase ejectors as an expansion valve. The studies of the application of ejector as an expansion device are relatively scarce compared to the application of ejector as heat-driven refrigeration system. A better understanding of two-phase flow in the ejector is necessary to optimize energy saving of the system. This paper also presents effects of geometric parameters of the ejector as an expansion valve on the performance of vapor compression refrigeration cycle. In addition, the effect of working fluid on the two-phase expansion refrigeration system is covered. The authors predict that the challenge of future research on design of two-phase ejector is how to generate a pressure rise in diffuser for minimum compressor work and optimum COP improvement.
Czasopismo
Rocznik
Tom
16
Numer
7
Strony
4927-4937
Opis fizyczny
Bibliografia
  • 1. Ananthanarayanan, P.N., "Basic refrigeration and air conditioning", 2006, 3rd ed, p.467–470
  • 2. Cecchinato, L., "Part load efficiency of packaged air-cooled water chillers with inverter driven scroll compressors", Energy Conversion and Management, vol. 51, 7, 2010, p.1500-1509
  • 3. Nasution, H.& Hasan, M.N.W., "Potential electricity savings by variable speed control of compressor for air conditioning systems", Clean Technologies and Environmental Policy, vol. 8, 2006, p.105-111
  • 4. Aprea, C.& Mastrullo, R.& Renno, C., "Experimental analysis of the scroll compressor performances varying its speed", Applied Thermal Engineering, vol. 26, 10, 2006, p.983-992
  • 5. Qureshi, T.Q.& Tassou, S.A., "Variable-speed capacity control in refrigeration systems", Applied Thermal Engineering, vol. 16, 2, 1996, p.103-113
  • 6. Kornhauser AA. The use of an ejector as a refrigerant expander. In: Proceedings of the USN/IIR-Purdue refrigeration conference. West Lafayette, IN, USA.; 1990. p.10–9.
  • 7. Disawas, S.& Wongwises, S., "Experimental investigation on the performance of the refrigeration cycle using a two-phase ejector as an expansion device", International Journal of Refrigeration, vol. 27, 6, 2004, p.587-594
  • 8. Wongwises, S.& Disawas, S., "Performance of the two-phase ejector expansion refrigeration cycle", International Journal of Heat and Mass Transfer, vol. 48, 19–20, 2005, p.4282-4286
  • 9. Chaiwongsa, P.& Wongwises, S., "Effect of throat diameters of the ejector on the performance of the refrigeration cycle using a two-phase ejector as an expansion device", International Journal of Refrigeration, vol. 30, 4, 2007, p.601-608
  • 10. Nehdi, E.& Kairouani, L.& Bouzaina, M., "Performance analysis of the vapour compression cycle using ejector as an expander", International Journal of Energy Research, vol. 31, 4, 2007, p.364-375
  • 11. Elbel, S.& Hrnjak, P., "Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation", International Journal of Refrigeration, vol. 31, 3, 2008, p.411-422
  • 12. Elbel, S., "Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications", International Journal of Refrigeration, vol. 34, 7, 2011, p.1545-1561
  • 13. Bilir, N.& Ersoy, H.K., "Performance improvement of the vapour compression refrigeration cycle by a two-phase constant area ejector", International Journal of Energy Research, vol. 33, 5, 2009, p.469-480
  • 14. Sarkar, J., "Geometric parameter optimization of ejector-expansion refrigeration cycle with natural refrigerants", International Journal of Energy Research, vol. 34, 1, 2010, p.84-94
  • 15. Power, R.B., "Steam jet ejectors for the process industries", 1993, 1st Ed.
  • 16. El-Dessouky, H.& Ettouney, H.& Alatiqi, I.& Al-Nuwaibit, G., "Evaluation of steam jet ejectors", Chemical Engineering and Processing, vol. 41, 6, 2002, p.551-561
  • 17. ASHRAE. Equipment Handbook. Steam-jet Refrigeration Equipment. Chapter 13, Atlanta, GA, USA; 1979.
  • 18. Sokolov, M.& Hershgal, D., "Enhanced ejector refrigeration cycles powered by low grade heat. Part 1. Systems characterization", International Journal of Refrigeration, vol. 13, 6, 1990, p.351-356
  • 19. Gay, N.H., Refrigerating System, vol. 836, 1, 1931, p.318
  • 20. Kemper GA, Harper GF, Brown GA. Multiple phase ejector refrigeration system. US Patent. Patent no. 3277660; 1966.
  • 21. Newton AB. Capacity control for multiphase-phase ejector refrigeration system. No. 3670519; 1972a.
  • 22. Newton AB. Control for multiphase-phase ejector refrigeration system. No. 3670519; 1972b.
  • 23. Dahmani, A.& Aidoun, Z.& Galanis, N., "Optimum design of ejector refrigeration systems with environmentally benign fluids", International Journal of Thermal Sciences, vol. 50, 8, 2011, p.1562-1572
  • 24. Sumeru K, Nasution H, Ani FN. The application of gas ejector for road transport air conditioning system. In: Proceedings of the 4th international meeting of advances in thermofluids. Melaka; October 2011. p. 1140–7.
  • 25. Abdulateef, J.M.& Sopian, K.& Alghoul, M.A.& Sulaiman, M.Y., "Review on solar-driven ejector refrigeration technologies", Renewable and Sustainable Energy Reviews, vol. 13, 6–7, 2009, p.1338-1349
  • 26. Zhu, Y.& Li, Y., "Novel ejector model for performance evaluation on both dry and wet vapors ejectors", International Journal of Refrigeration, vol. 32, 1, 2009, p.21-31
  • 27. Yapıcı, R.& Ersoy, H.K.& Aktoprakoğlu, A.& Halkacı, H.S.& Yiğit, O., "Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio", International Journal of Refrigeration, vol. 31, 7, 2008, p.1183-1189
  • 28. Pridasawas W. Solar-driven refrigeration system with focus on the ejector cycle. PhD thesis, Sweden. Royal Institute of Technology; 2006.
  • 29. Yapıcı, R.& Ersoy, H.K., "Performance characteristics of the ejector refrigeration system based on the constant area ejector flow model", Energy Conversion and Management, vol. 46, 18–19, 2005, p.3117-3135
  • 30. Selvaraju, A.& Mani, A., "Experimental investigation on R134a vapour ejector refrigeration system", International Journal of Refrigeration, vol. 29, 7, 2006, p.1160-1166
  • 31. Chunnanond, K.& Aphornratana, S., "Ejectors: applications in refrigeration technology", Renewable and Sustainable Energy Reviews, vol. 8, 2, 2004, p.129-155
  • 32. Aphornratana, S.& Chungpaibulpatana, S.& Srikhirin, P., "Experimental investigation of an ejector refrigerator: Effect of mixing chamber geometry on system performance", International Journal of Energy Research, vol. 25, 5, 2001, p.397-411
  • 33. Huang, B.J.& Chang, J.M., "Empirical correlation for ejector design", International Journal of Refrigeration, vol. 22, 5, 1999, p.379-388
  • 34. Huang, B.J.& Chang, J.M.& Wang, C.P.& Petrenko, V.A.A., "1-D analysis of ejector performance", International Journal of Refrigeration, vol. 22, 5, 1999, p.354-364
  • 35. Chen, Y.M.& Sun, C.Y., "Experimental study of the performance characteristics of a steam-ejector refrigeration system", Experimental Thermal and Fluid Science, vol. 15, 4, 1997, p.384-394
  • 36. Al-Klalidy, N., "Performance of solar refrigeration ejector refrigerating machine", ASHRAE Transactions, vol. 103, 1, 1997, p.56-64
  • 37. Eames, I.W.& Aphornratana, S.& Haider, H., "A theoretical and experimental study of a small-scale steam jet refrigerator", International Journal of Refrigeration, vol. 18, 6, 1995, p.378-386
  • 38. Chang V, Gravalos J, Chitty A. Thermal performance of an ejector-compressor colar cooling system. In: Proceedings of the ninth Biennial Congress of the international solar energy society. Montreal, Canada; 1986. p.744–8.
  • 39. ASHRAE. Equipment Handbook. Steam-jet Refrigeration Equipment. Chapter 13. 3.1-13.6, Atlanta, GA, USA; 1983.
  • 40. Bergander MJ, Butrymowics D, Smierciew K, Karwacki J. Refrigeration cycle with ejector for second step compression. In: International refrigeration and air conditioning conference at Purdue; July 12–15,. 2010, R2211. p.1–8.
  • 41. Bergander MJ. Refrigeration cycle with two-phase condensing ejector. In: International refrigeration and air conditioning conference. Purdue University; July 17–20, 2006, R0008. p.1–8.
  • 42. Chen, X.& Zhou, Y.& Yu, J., "A theoretical study of an innovative ejector enhanced vapor compression heat pump cycle for water heating application", Energy and Buildings, vol. 43, 12, 2011, p.3331-3336
  • 43. Elbel S, Hrnjak P. Ejector Refrigeration: an overview of historical and present developments with an emphasis on air-conditioning applications. In: International refrigeration and air conditioning conference. Purdue University. Paper 884; July 14–17; 2008. p.1–8.
  • 44. Keenan, J.H.& Neumann, E.P., "A simple air ejector", ASME Journal of Applied Mechanics, vol. 64, 1942, p.75-82
  • 45. Keenan, J.H.& Neumann, E.P.& Lustwerk, F., "An investigation of ejector design by analysis and experiment", ASME Journal Applied Mechanics, vol. 17, 1950, p.299-309
  • 46. He, S.& Li, Y.& Wang, R.Z., "Progress of mathematical modeling on ejectors", Renewable and Sustainable Energy Reviews, vol. 13, 8, 2009, p.1760-1780
  • 47. Khan, M.K.& Kumar, R.& Sahoo, P.K., "Flow characteristics of refrigerants flowing through capillary tubes—a review", Applied Thermal Engineering, vol. 29, 8–9, 2009, p.1426-1439
  • 48. Arora, C.P., "Refrigeration and air conditioning", 2001, 2nd ed., p.321
  • 49. Schulz, U.W., "State of the art: the capillary tube for, an in, vapor compression system", ASHRAE Transactions, 1985, p.92-105
  • 50. Sarkar, J., "Optimization of ejector-expansion transcritical CO2 heat pump cycle", Energy, vol. 33, 9, 2008, p.1399-1406
  • 51. Loretzen G. Throttling, the internal hemorrhage of the refrigeration process. In: Proceedings of the institute of refrigeration, vol. 80; 1983. p.39–47.
  • 52. Deng, J.Q.& Jiang, P.Q.& Lu, T.& Lu, W., "Particular characteristics of transcritical CO2 refrigeration cycle with an ejector", Applied Thermal Engineering, vol. 27, 2–3, 2007, p.381-388
  • 53. Robinson, D.M.& Groll, E.A., "Efficiencies of transcritical CO2 cycles with and without an expansion turbine", International Journal of Refrigeration, vol. 21, 7, 1998, p.577-589
  • 54. Kornhauser AA, Menegay P. Method of reducing flow metastability in an ejector nozzle. US Patent no. 5343711; 1994.
  • 55. Menegay P, Kornhauser AA. Improvement to the ejector expansion refrigeration cycle. In: Proceedings of the intersociety energy conversion engineering conference, vol. 2, Washington DC; 1996. p.702–6.
  • 56. Harrel GS, Kornhauser AA. Performance test of two-phase ejector. In: Proceedings of the 30th intersociety energy conversion engineering conference, Orlando, FL; 1995. p.49–53.
  • 57. Ersoy, H.K.& Bilir, N., "The influence of ejector component efficiencies on performance of ejector expander refrigeration cycle and exergy analysis", International Journal of Exergy, vol. 7, 2010, p.425-438
  • 58. Liu JP, Chen JP, Chen ZJ. Thermodynamic analysis on transcritical R744 vapor compression/ejection hybrid refrigeration cycle In: Proceedings of the fifth IIR Gustav Lorentzen conference on natural working fluid, Guangzhou, China; 2002. p.184–8.
  • 59. Ozaki Y, Takeuchi H, Hirata T. Regeneration of expansion energy by ejector in CO2 cycle. In: Proceedings of the sixth IIR Gustav Lorentzen conference on natural working fluid, Glasgow, UK. Glasgow, UK; 2004. p.11–20.
  • 60. Li, D.& Groll, E.A., "Transcritical CO2 refrigeration cycle with ejector-expansion device", International Journal of Refrigeration, vol. 28, 5, 2005, p.766-773
  • 61. Yari, M.& Sirousazar, M., "Cycle improvements to ejector-expansion transcritical CO2 two-stage refrigeration cycle", International Journal of Energy Research, vol. 32, 7, 2008, p.677-687
Kolekcja
Elsevier
Identyfikator YADDA
bwmeta1.element.elsevier-cf2b52a8-cc66-34c5-af94-75e21c051b92
Identyfikatory
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.