Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 58 | 4 | 383-502
Tytuł artykułu

Mechanically alloyed nanocomposites

Treść / Zawartość
Abstrakt, słowa kluczowe
Źródło
Twórcy
Bibliografia
Dodatkowe informacje
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechanical alloying (MA) is a solid-state powder processing technique that was developed in the 1960s to synthesize nickel-based oxide-dispersion strengthened (ODS) superalloys that combine the twin effects of precipitation hardening (for intermediate temperature strength) and dispersion hardening (for elevated temperature strength). These ODS alloys contain very fine, nanometer-sized, oxide (and other ceramic) phase particles to impart the high-temperature strength and can be considered the first nanocomposites synthesized by MA. In comparison to other techniques such as solidification processing or internal oxidation, MA is a simple technique with unique advantages. For example, it is very easy to obtain nanostructures in most cases, a high volume fraction of the reinforcement phase can be introduced into the composite, and consolidation of the milled powder to full density is relatively easy. Recent advances in the synthesis and properties of nanocomposites obtained by MA have been reviewed here. Both metal-based and ceramic-based nanocomposites have been discussed. Extensive list of references, majority of them published after the year 2000, have been provided. The review also contains complete listing of all the data that is available for each category of the composites.
Słowa kluczowe
Czasopismo
Rocznik
Tom
58
Numer
4
Strony
383-502
Opis fizyczny
Twórcy
  • Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia , Challapalli.Suryanarayana@ucf.edu
  • Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL. 32816-2450, USA
  • Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
Bibliografia
  • 1. Clyne, T.W.& Withers, P.J., "An introduction to metal matrix composites", 1995
  • 2. Hull, D.& Clyne, T.W., "An Introduction to composite materials", 1996, 2nd ed.
  • 3. Chawla, N.& Chawla, K.K., "Metal matrix composites", 2005
  • 4. Chawla, K.K., "Composite materials science and engineering", 2009, 3rd ed.
  • 5. Tjong, S.C.& Ma, Z.Y., "Microstructural and mechanical characteristics of in situ metal matrix composites", Mater Sci Eng Reports, vol. R29, 2000, p.49-113
  • 6. Miracle, D.B., "Metal matrix composites – from science to technological significance", Compos Sci Technol, vol. 65, 2005, p.2526-2540
  • 7. Tjong, S.C., "Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties", Adv Eng Mater, vol. 9, 2007, p.639-652
  • 8. Yang, Y.& Lan, J.& Li, X., "Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy", Mater Sci Eng A, vol. A380, 2004, p.378-383
  • 9. Preston, O.& Grant, N.J., "Dispersion strengthening of copper by internal oxidation", Trans Metall Soc AIME, vol. 221, 1961, p.164-173
  • 10. Shi, Z.& Wang, D., "Alumina particles in a copper matrix formed by aluminizing and internal oxidation", J Mater Sci Lett, vol. 17, 1998, p.477-479
  • 11. Koo, J., "Polymer nanocomposites: processing, characterization, and applications", 2006
  • 12. Gupta, R.K.& Kennel, E.& Kim, K.J., "Polymer nanocomposites handbook", 2009
  • 13. Leng, J.S.& Lau, A.K., "Multifunctional polymer nanocomposites", 2010
  • 14. Benjamin, J.S., "Mechanical alloying", Sci Am, vol. 234, 5, 1976, p.40-48
  • 15. Benjamin, J.S., "Mechanical alloying – history and future potential", Capus, J.M.& German, R.M. et al. (Eds.), Advances in powder metallurgy and particulate materials, Novel powder processing, vol. vol. 7, 1992, p.155-168
  • 16. Suryanarayana, C., "Mechanical alloying and milling", Prog Mater Sci, vol. 46, 2001, p.1-184
  • 17. Suryanarayana, C., "Mechanical alloying and milling", 2004
  • 18. Weeber, A.W.& Bakker, H.& deBoer, F.R., "The preparation of amorphous Ni–Zr powder by grinding the crystalline alloy", Europhys Lett, vol. 2, 1986, p.445-448
  • 19. Jangg, G.& Kuttner, F.& Korb, G., "Preparation and properties of dispersion hardened aluminum", Aluminium, vol. 51, 1975, p.641-645
  • 20. Jangg, G., "Reaction milling of aluminum alloys", Arzt, E.& Schultz, L. (Eds.), New materials by mechanical alloying techniques, 1989, p.39-52
  • 21. Luton, M.J.& Jayanth, C.S.& Disko, M.M.& Matras, M.M.& Vallone, J., "Cryomilling of nano-phase dispersion strengthened aluminum", McCandlsih, L.E.& Polk, D.E.& Siegel, R.W.& Kear, B.H. (Eds.), Multicomponent ultrafine microstructures, vol. vol. 132, 1989, p.79-86
  • 22. Witkin, D.B.& Lavernia, E.J., "Synthesis and mechanical behavior of nanostructured materials via cryomilling", Prog Mater Sci, vol. 51, 2006, p.1-60
  • 23. Heinicke, G., "Tribochemistry", 1984
  • 24. McCormick, P.G., "Mechanical alloying and mechanically induced chemical reactions", Gschneidner, K.A. Jr.& Eyring, L. (Eds.), Handbook on the physics and chemistry of rare earths, vol. vol. 24, 1997, p.47-81
  • 25. Gutman, E.M., "Mechanochemistry of materials", 1998
  • 26. Avvakumov, E.G.& Senna, M.& Kosova, N.V., "Soft mechanochemical synthesis: a basis for new chemical technologies", 2001
  • 27. Takacs, L., "Self-sustaining reactions induced by ball milling", Prog Mater Sci, vol. 47, 2002, p.355-414
  • 28. Boldyrev, V.V., "Mechanochemistry and mechanical activation of solids", Russ Chem Rev, vol. 75, 2006, p.177-189
  • 29. Baláž, P., "Mechanochemistry in nanoscience and minerals engineering", 2008
  • 30. Sopicka-Lizer, M. (Eds.), High energy ball milling, 2010
  • 31. Suryanarayana, C.& Ivanov, E., "Mechanochemical synthesis of nanocrystalline metal powders", Chang, I.T.& Zhao, Y. (Eds.), Advances in powder metallurgy, 2012
  • 32. Schaffer, G.B.& McCormick, P.G., "Reduction of metal oxides by mechanical alloying", Appl Phys Lett, vol. 55, 1989, p.45-46
  • 33. Schaffer, G.B.& McCormick, P.G., "Displacement reactions during mechanical alloying", Metall Trans A, vol. A21, 1990, p.2789-2794
  • 34. Takacs, L., "Reduction of magnetite by aluminum: a displacement reaction induced by mechanical alloying", Mater Lett, vol. 13, 1992, p.119-124
  • 35. Schaffer, G.B.& McCormick, P.G., "On the kinetics of mechanical alloying", Metall Trans A, vol. A23, 1992, p.1285-1290
  • 36. McCormick, P.G.& Wharton, V.N.& Reyhani, M.M.& Schaffer, G.B., Van Aken, D.C.& Was, G.S.& Ghosh, A.K. (Eds.), Microcomposites and nanophase materials, 1991, p.65-79
  • 37. Singer, R.F.& Oliver, W.C.& Nix, W.D., "Identification of dispersoid phases created in aluminum during mechanical alloying", Metall Trans A, vol. 11A, 1980, p.1895-1901
  • 38. Kubota, M.& Kaneko, J.& Sugamata, M., "Properties of mechanically milled and spark plasma sintered Al–AlB2 and Al–MgB2 nano-composite materials", Mater Sci Eng A, vol. A475, 2008, p.96-100
  • 39. Wu, J.M.& Li, Z.Z., "Nanostructured composite obtained by mechanically driven reduction reaction of CuO and Al powder mixture", J Alloys Compd, vol. 299, 2000, p.9-16
  • 40. Nayak, S.S.& Wollgarten, M.& Banhart, J.& Pabi, S.K.& Murty, B.S., "Nanocomposites and an extremely hard nanocrystalline intermetallic of Al–Fe alloys prepared by mechanical alloying", Mater Sci Eng A, vol. A527, 2010, p.2370-2378
  • 41. Abdoli, H.& Salahi, E.& Farnoush, H.& Pourazrang, K., "Evolutions during synthesis of Al–AlN-nanostructured composite powder by mechanical alloying", J Alloys Compd, vol. 461, 2008, p.166-172
  • 42. Abdoli, H.& Asgharzadeh, H.& Salahi, E., "Sintering behavior of Al–AlN-nanostructured composite powder synthesized by high-energy ball milling", J Alloys Compd, vol. 473, 2009, p.116-122
  • 43. Abdoli, H.& Saebnouri, E.& Sadrnezhaad& SK& Ghanbari, M.& Shahrab, T., "Processing and surface properties of Al–AlN composites produced from nanostructured milled powders", J Alloys Compd, vol. 490, 2010, p.624-630
  • 44. Arami, H.& Simchi, A.& Seyed Reihani, S.M., "Mechanical induced reaction in Al–CuO system for in-situ fabrication of Al based nanocomposites", J Alloys Compd, vol. 465, 2008, p.151-156
  • 45. Prabhu, B.& Suryanarayana, C.& An, L.& Vaidyanathan, R., "Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling", Mater Sci Eng A, vol. A425, 2006, p.192-200
  • 46. Zebarjad, S.M.& Sajjadi, S.A., "Microstructure evaluation of Al–Al2O3 composite produced by mechanical alloying method", Mater Des, vol. 27, 2006, p.684-688
  • 47. Razavi Hesabi, Z.& Simchi, A.& Seyed Reihani, S.M., "Structural evolution during mechanical milling of nanometric and micrometric Al2O3 reinforced Al matrix composites", Mater Sci Eng A, vol. A428, 2006, p.159-168
  • 48. Razavi Hesabi, Z.& Hafizpour, H.R.& Simchi, A., "An investigation on the compressibility of aluminum/nano-alumina composite powder prepared by blending and mechanical milling", Mater Sci Eng A, vol. A454–455, 2007, p.89-98
  • 49. Hasegawa, T.& Miura, T.& Takahashi, T.& Yakou, T., "Strengthening mechanisms in aluminum–ceramic particle composite alloys by mechanical alloying", ISIJ Int, vol. 32, 1992, p.902-908
  • 50. Nayak, S.S.& Pabi, S.K.& Murty, B.S., "Al–(L12)Al3Ti nanocomposites prepared by mechanical alloying: synthesis and mechanical properties", J Alloys Compd, vol. A492, 2010, p.128-133
  • 51. Povstugar, I.V.& Streletskii, A.N.& Permenov, D.G.& Kolbanev, I.V.& Mudretsova, S.N., "Mechanochemical synthesis of activated Me–BN (Me=Al, Mg, Ti) nanocomposites", J Alloys Compd, vol. 483, 2009, p.298-301
  • 52. Goussous, S.& Xu, W.& Wu, X.& Xia, K., "Al–C nanocomposites consolidated by back pressure equal channel angular pressing", Compos Sci Technol, vol. 69, 2009, p.1997-2001
  • 53. Arik, H., "Production and characterization of in situ Al4C3 reinforced aluminum-based composite produced by mechanical alloying technique", Mater Des, vol. 25, 2004, p.31-40
  • 54. Morsi, K.& Esawi, A., "Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders", J Mater Sci, vol. 42, 2007, p.4954-4959
  • 55. Esawi, A.& Morsi, K., "Dispersion of carbon nanotubes (CNTs) in aluminum powder", Composites A, vol. A38, 2007, p.646-650
  • 56. Goytia-Reyes, R.& Gallegos-Orozco, V.& Flores-Zuñiga, H.& Alvarado-Hernandez, F.& Huirache-Acuña, R.& Martı´nez-Sánchez, R. et al., "Microstructure and properties in Al–C–Cu system produced by mechanical milling", J Alloys Compd, vol. 485, 2009, p.837-842
  • 57. Badiola, C.& Schoenitz, M.& Zhu, X.& Dreizin, E.L., "Nanocomposite thermite powders prepared by cryomilling", J Alloys Compd, vol. 488, 2009, p.386-391
  • 58. Kubota, M.& Cizek, P., "Synthesis of Al3BC from mechanically milled and spark plasma sintered Al–MgB2 composite materials", J Alloys Compd, vol. 457, 2008, p.209-215
  • 59. Maiti, R.& Chakraborty, M., "Synthesis and characterization of molybdenum aluminide nanoparticles reinforced aluminium matrix composites", J Alloys Compd, vol. 458, 2008, p.450-456
  • 60. Choi, H.J.& Kwon, G.B.& Lee, G.Y.& Bae, D.H., "Reinforcement with carbon nanotubes in aluminum matrix composites", Scr Mater, vol. 59, 2008, p.360-363
  • 61. Morsi, K.& Esawi, A.M.K.& Lanka, S.& Sayed, A.& Taher, M., "Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders", Composites A, vol. A41, 2010, p.322-326
  • 62. Esawi, A.M.K.& Morsi, K.& Sayed, A.& Taher, M.& Lanka, S., "Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminum composites", Compos Sci Technol, vol. 70, 2010, p.2237-2241
  • 63. Esawi, A.M.K.& Morsi, K.& Sayed, A.& Abdel Gawad, A.& Borah, P., "Fabrication and properties of dispersed carbon nanotube–aluminum composites", Mater Sci Eng A, vol. A508, 2009, p.167-173
  • 64. Pérez-Bustamante, R.& Estrada-Guel, I.& Amézaga-Madrid, P.& Miki-Yoshida, M.& Herrera-Ramı´rez, J.M.& Martı´nez-Sánchez, R., "Microstructural characterization of Al–MWCNT composites produced by mechanical milling and hot extrusion", J Alloys Compd, vol. 495, 2010, p.399-402
  • 65. Pérez-Bustamante, R.& Estrada-Guel, I.& Antunez-Flores, W.& Miki-Yoshida, M.& Ferreira, P.J.& Martı´nez-Sánchez, R., "Novel Al-matrix nanocomposites reinforced with multi-walled carbon nanotubes", J Alloys Compd, vol. 450, 2008, p.323-326
  • 66. Poirier, D.& Gauvin, R.& Drew, R.A.L., "Structural characterization of a mechanically milled carbon nanotube/aluminum mixture", Composites A, vol. A40, 2009, p.1482-1489
  • 67. Csanády, Á& Sajó, I.& Lábár, J.L.& Szalay, A.& Papp, K.& Balaton, G. et al., "Al–Pb nanocomposites made by mechanical alloying and consolidation", Current Appl Phys, vol. 6, 2006, p.131-134
  • 68. Sherif El-Eskandarany, M., "Mechanical solid state mixing for synthesizing of SiCp/Al nanocomposites", J Alloys Compd, vol. 279, 1998, p.263-271
  • 69. Gu, W.L., "Bulk Al/SiC nanocomposite prepared by ball milling and hot pressing method", Trans Nonferrous Metals Soc China, vol. 16, 2006, p.s398-s401
  • 70. Saberi, Y.& Zebarjad, S.M.& Akbari, G.H., "On the role of nano-size SiC on lattice strain and grain size of Al/SiC nanocomposite", J Alloys Compd, vol. 484, 2009, p.637-640
  • 71. Kollo, L.& Leparoux, M.& Bradbury, C.R.& Jäggi, C.& Carreño-Morelli, E.& Rodrı´guez-Arbaizar, M., "Investigation of planetary milling for nano-silicon carbide reinforced aluminium metal matrix composites", J Alloys Compd, vol. 489, 2010, p.394-400
  • 72. Sadeghian, Z.& Enayati, M.H.& Beiss, P., "In-situ production of Al–TiB2 nanocomposite by double-step mechanical alloying", J Mater Sci, vol. 44, 2009, p.2566-2572
  • 73. Woo, K.D.& Zhang, D.L., "Fabrication of Al–7wt%Si–0.4wt%Mg/SiC nanocomposite powders and bulk nanocomposites by high energy ball milling and powder metallurgy", Current Applied Physics, vol. 4, 2004, p.175-178
  • 74. Arami, H.& Simchi, A., "Reactive milling synthesis of nanocrystalline Al–Cu/Al2O3 nanocomposite", Mater Sci Eng A, vol. A464, 2007, p.225-232
  • 75. Ozdemir, I.& Ahrens, S.& Mücklich, S.& Wielage, B., "Nanocrystalline Al–Al2O3p and SiCp composites produced by high-energy ball milling", J Mater Process Technol, vol. 205, 2008, p.111-118
  • 76. Xi, S.Q.& Qu, X.Y.& Ma, M.L.& Zhou, J.& Zheng, X.L.& Wang, X.T., "Solid-state reaction of Al/CuO couple by high-energy ball milling", J Alloys Compd, vol. 268, 1998, p.211-214
  • 77. Lu, L.& Lai, M.O.& Ng, C.W., "Enhanced mechanical properties of an Al based metal matrix composite prepared using mechanical alloying", Mater Sci Eng A, vol. A252, 1998, p.203-211
  • 78. Huo, H.W.& Woo, K.D.& Guo, G.S.& Zhang, D.L., "Effect of high energy ball milling on the displacement reaction in particulate reinforced Al–Si–Cu alloy matrix composite powders", J Mater Sci, vol. 42, 2007, p.59-65
  • 79. Choi, H.J.& Shin, J.H.& Min, B.H.& Bae, D.H., "Deformation behavior of Al–Si alloy based nanocomposites reinforced with carbon nanotubes", Composites, vol. A41, 2010, p.327-329
  • 80. Birol, Y., "Response to thermal exposure of the mechanically alloyed Al–Ti/C powders", J Mater Sci, vol. 42, 2007, p.5123-5128
  • 81. Hayes, R.W.& Rodriguez, R.& Lavernia, E.J., "The mechanical behavior of a cryomilled Al–10Ti–2Cu alloy", Acta Mater, vol. 49, 2001, p.4055-4068
  • 82. Tavoosi, M.& Karimzadeh, F.& Enayati, M.H., "Fabrication of Al–Zn/α-Al2O3 nanocomposite by mechanical alloying", Mater Lett, vol. 62, 2008, p.282-285
  • 83. Durai, T.G.& Das, K.& Das, S., "Wear behavior of nanostructured Al(Zn)/Al2O3 and Al(Zn)–4Cu/Al2O3 composite materials synthesized by mechanical and thermal process", Mater Sci Eng A, vol. A471, 2007, p.88-94
  • 84. Mazahery, A.& Abdizadeh, H.& Baharvandi, H.R., "Development of high-performance A356/nano-Al2O3 composites", Mater Sci Eng A, vol. A518, 2009, p.61-64
  • 85. Carreño-Gallardo, C.& Estrada-Guel, I.& Neria, M.A.& Rocha-Rangel, E.& Romero-Romo, M.& López-Meléndez, C. et al., "Carbon-coated silver nanoparticles dispersed in a 2024 aluminum alloy produced by mechanical milling", J Alloys Compd, vol. 483, 2009, p.355-358
  • 86. Goujon, C.& Goeuriot, P.& Delcroix, P.& Le Caër, G., "Mechanical alloying during cryomilling of a 5000 Al alloy/AlN powder; the effect of contamination", J Alloys Compd, vol. 315, 2001, p.276-283
  • 87. Khakbiz, M.& Akhlaghi, F., "Synthesis and structural characterization of Al–B4C nano-composite powders by mechanical alloying", J Alloys Compd, vol. 479, 2009, p.334-341
  • 88. Son, H.T.& Kim, T.S.& Suryanarayana, C.& Chun, B.S., "Homogeneous dispersion of graphite in a 6061 aluminum alloy by ball milling", Mater Sci Eng A, vol. A348, 2003, p.163-169
  • 89. Parvin, N.& Assadifard, R.& Safarzadeh, P.& Sheibani, S.& Marashi, P., "Preparation and mechanical properties of SiC-reinforced Al6061 composite by mechanical alloying", Mater Sci Eng A, vol. A492, 2008, p.134-140
  • 90. Sivasankaran, S.& Sivaprasad, K.& Narayanasamy, R.& Iyer, V.K., "Synthesis, structure, and sinterability of 6061 AA100−x–xwt.% TiO2 composites prepared by high-energy ball milling", J Alloys Compd, vol. 491, 2010, p.712-721
  • 91. Sivasankaran, S.& Sivaprasad, K.& Narayanasamy, R.& Iyer, V.K., "Effect of strengthening mechanisms on cold workability and instantaneous strain hardening behavior during grain refinement of AA 6061–10wt.% TiO2 composite prepared by mechanical alloying", J Alloys Compd, vol. 507, 2010, p.236-244
  • 92. Asgharzadeh, H.& Simchi, A.& Kim, H.S., "In situ synthesis of nanocrystalline Al6063 matrix nanocomposite powder via reactive mechanical alloying", Mater Sci Eng A, vol. A527, 2010, p.4897-4905
  • 93. Bhaduri, A.& Gopinathan, V.& Ramakrishnan, P.& Ede, G.& Miodownik, A.P., "Microstructural evolution during mechanical alloying of Al (7010)–SiCp composites", Scr Metall Mater, vol. 28, 1993, p.907-912
  • 94. Bhaduri, A.& Gopinathan, V.& Ramakrishnan, P.& Miodownik, A.P., "Processing and properties of SiC-reinforced Al–6.2Zn–2.5Mg–1.7Cu alloy (7010) matrix composites prepared by mechanical alloying", Mater Sci Eng A, vol. A221, 1996, p.94-101
  • 95. Flores-Compos, R.& Mendoza-Ruiz, D.C.& Amézaga-Madrid, P.& Estrada-Guel, I.& Miki-Yoshida, M.& Herrera-Ramı´rez, J.M. et al., "Microstructural and mechanical characterization in 7075 aluminum alloy reinforced by silver nanoparticles", J Alloys Compd, vol. 495, 2010, p.394-398
  • 96. Estrada-Guel, I.& Carreño-Gallardo, C.& Mendoza-Ruiz, D.C.& Miki-Yoshida, M.& Rocha-Rangel, E.& Martı´nez-Sánchez, R., "Graphite nanoparticle dispersion in 7075 aluminum alloy by means of mechanical alloying", J Alloys Compd, vol. 483, 2009, p.173-177
  • 97. Sankar, R.& Singh, P., "Synthesis of 7075 Al/SiC particulate composite powders by mechanical alloying", Mater Lett, vol. 36, 1998, p.201-205
  • 98. Le Caër, G.& Bauer-Grosse, E.& Pianelli, A.& Bouzy, B.& Matteazzi, P., "Mechanically driven synthesis of carbides and silicides", J Mater Sci, vol. 25, 1990, p.4726-4731
  • 99. Matteazzi, P.& Basset, D.& Miani, F.& Le Caër, G., "Mechanosynthesis of nanophase materials", Nanostruct Mater, vol. 2, 1993, p.217-229
  • 100. Teresiak, A.& Mattern, N.& Kubsch, H.& Kieback, B.F., "Structure and stability of nanocrystalline TiC powders obtained by reactive high energy milling", Nanostruct Mater, vol. 4, 1994, p.775-786
  • 101. Tavoosi, M.& Karimzadeh, F.& Enayati, M.H.& Heidarpour, A., "Bulk Al–Zn/Al2O3 nanocomposite prepared by reactive milling and hot pressing methods", J Alloys Compd, vol. 475, 2009, p.198-201
  • 102. Zebarjad, S.M.& Sajjadi, S.A., "Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time", Mater Des, vol. 28, 2007, p.2113-2120
  • 103. Hernández Rivera, J.L.& Cruz Rivera, J.J.& Paz del Ángel, V.& Garibay Febles, V.& Coreño Alonso, O.& Martı´nez Sánchez, R., "Structural and morphological study of a 2024 l-Al2O3 composite produced by mechanical alloying in high energy mill", Mater Des, vol. 37, 2012, p.96-101
  • 104. Wang, Y.& Suryanarayana, C.& An, L., "Phase transformation in nanometer-sized γ-alumina by mechanical milling", J Am Ceram Soc, vol. 88, 2005, p.780-783
  • 105. Prabhu B. Microstructural and mechanical characterization of Al–Al2O3 nanocomposites synthesized by high-energy milling. M.S. Thesis, University of Central Florida, Orlando, FL, USA, 2005.
  • 106. Nguyen TT, Suryanarayana C, Vaidyanathan R. Unpublished results. University of Central Florida, Orlando, USA, 2010.
  • 107. Lerf, R.& Morris, D.G., "Mechanical alloying of Al–Ti alloys", Mater Sci Eng A, vol. A128, 1990, p.119-127
  • 108. Wang, S.H.& Kao, P.E., "The strengthening effect of Al3Ti in high temperature deformation of Al–Al3Ti composites", Acta Mater, vol. 46, 1998, p.2675-2682
  • 109. Iijima, S., "Helical microtubules of graphitic carbon", Nature, vol. 354, 1991, p.56-58
  • 110. Popov, V.N., "Carbon nanotubes: properties and application", Mater Sci Eng Rep, vol. R43, 2004, p.61-102
  • 111. Robertson, J., "Realistic applications of CNT", Mater Today, vol. 7, 10, 2004, p.46-52
  • 112. Morsi, K.& El-Desouky, A.& Johnson, B.& Mar, A.& Lanka, S., "Spark plasma extrusion (SPE): prospects and potential", Scr Mater, vol. 61, 2009, p.395-398
  • 113. Jafari, M.& Abbasi, M.H.& Enayati, M.H.& Karimzadeh, F., "Mechanical properties of nanostructured Al2024–MWCNT composite prepared by optimized mechanical milling and hot pressing methods", Adv Powder Technol, vol. 23, 2012, p.205-210
  • 114. Al-Aqeeli N, Abdullahi K, Suryanarayana C, Laoui T, Nouari S. Structure of mechanically milled CNT-reinforced Al-alloy nanocomposites. Mater Manufactur Proc (2012), in press.
  • 115. George, R.& Kashyap, K.T.& Rahul, R.& Yamdagni, S., "Strengthening in carbon nanotube/aluminium (CNT/Al) composites", Scr Mater, vol. 53, 2005, p.1159-1163
  • 116. Al-Aqeeli N, Abdullahi K, Hakeem AS, Suryanarayana C, Laoui T, Nouari S. Synthesis, characterization and mechanical properties of SiC-reinforced Al-based nanocomposites processed by MA and SPS. Powder Metall, in press. http://dx.doi.org/10.1179/1743290112Y.0000000029.
  • 117. Mostaan, H.& Karimzadeh, F.& Abbasi, M.H., "Investigation of in-situ synthesis of NbAl3/Al2O3 nanocomposite by mechanical alloying and its formation mechanism", J Alloys Compd, vol. 503, 2010, p.294-298
  • 118. Yazdian, N.& Karimzadeh, F.& Enayati, M.H., "In-situ fabrication of Al3V/Al2O3 nanocomposite through mechanochemical synthesis and evaluation of its mechanism", Adv Powder Technol, vol. 24, 2013, p.106-112
  • 119. Yeo, W.S.& Yaacob, I.I., "Mechanical alloying of Al2O3–Co powders mixture", Key Eng Mater, vol. 306–308, 2006, p.1109-1114
  • 120. Ni, X.& Ma, J.& Li, J.G.& Jiao, D.M.& Huang, J.J.& Zhang, X.D., "Microwave characteristics of Co/TiO2 nanocomposites prepared by mechanochemical synthesis", J Alloys Compd, vol. 468, 2009, p.386-391
  • 121. Tang, J.& O’Connor, C.E.& Feng, L., "Magnetotransport and antiferromagnetic coupling in nanocomposites EuS–Co", J Alloys Compd, vol. 275–277, 1998, p.606-610
  • 122. Upadhyaya, A.& Upadhyaya, G.S., "Sintering of copper–alumina composites through blending and mechanical alloying powder metallurgy routes", Mater Des, vol. 16, 1995, p.41-45
  • 123. Ying, D.Y.& Zhang, D.L., "Processing of Cu–Al2O3 metal matrix nanocomposite materials by using high energy ball milling", Mater Sci Eng A, vol. A286, 2000, p.152-156
  • 124. Hahn, S.I.& Hwang, S.J., "Estimate of the Hall–Petch and Orowan effects in the nanocrystalline Cu with Al2O3 dispersoid", J Alloys Compd, vol. 483, 2009, p.207-208
  • 125. Rajkovic, V.& Bozic, D.& Jovanovic, M.T., "Effects of copper and Al2O3 particles on characteristics of Cu–Al2O3 composites", Mater Des, vol. 31, 2010, p.1962-1970
  • 126. Shehata, F.& Fathy, A.& Abdelhameed, A.& Moustafa, S.F., "Fabrication of copper–alumina nanocomposites by mechano-chemical routes", J Alloys Compd, vol. 476, 2009, p.300-305
  • 127. Zhang, D.L.& Raynova, S.& Koch, C.C.& Scattergood, R.O.& Youssef, K.M., "Consolidation of a Cu–2.5vol.% Al2O3 powder using high energy mechanical milling", Mater Sci Eng A, vol. A410–411, 2005, p.375-380
  • 128. Wang, X.H.& Liang, S.& Yang, P.& Fan, Z.K., "Effect of Al2O3 particle size on vacuum breakdown behavior of Al2O3/Cu composite", Vacuum, vol. 83, 2009, p.1475-1480
  • 129. Lyakhov, N.& Grogorieva, T.& Barinova, A.& Lomayeva, S.& Yelsukov, E.& Ulyanov, A., "Nanosized mechanocomposites and solid solution in immiscible metal systems", J Mater Sci, vol. 39, 2004, p.5421-5423
  • 130. Livramento, V.& Correia, J.B.& Shohoji, N.& Ōsawa, E., "Nanodiamond as an effective reinforcing component for nano-copper", Diamond Relat Mater, vol. 16, 2007, p.202-204
  • 131. He, L.& Ma, E., "Processing and microhardness of bulk Cu–Fe nanocomposites", Nanostruct Mater, vol. 7, 1996, p.327-339
  • 132. He, L.& Allard, L.F.& Ma, E., "A method to produce two-phase nanocomposites in solid state", Nanostruct Mater, vol. 12, 1999, p.543-546
  • 133. Correia, J.B.& Marques, M.T.& Carvalho, P.A.& Vilar, R., "Hardening in copper-based nanocomposites", J Alloys Compd, vol. 434–435, 2009, p.301-303
  • 134. Balaz, P.& Dutkova, E.& Skorvánek, I.& Gock, E.& Kovac, J.& Satka, A., "Kinetics of mechanochemical synthesis of Me/FeS (Me=Cu, Pb, Sb) nanoparticles", J Alloys Compd, vol. 483, 2009, p.484-487
  • 135. Sheibani, S.& Khakbiz, M.& Omidi, M., "In situ preparation of Cu–MnO nanocomposite powder through mechanochemical synthesis", J Alloys Compd, vol. 477, 2009, p.683-687
  • 136. Murphy, B.R.& Courtney, T.H., "Synthesis of Cu–NbC nanocomposites by mechanical alloying", Nanostruct Mater, vol. 4, 1994, p.365-369
  • 137. Zuhailawati, H.& Mahani, Y., "Effects of milling time on hardness and electrical conductivity of in situ Cu–NbC composite produced by mechanical alloying", J Alloys Compd, vol. 476, 2009, p.142-146
  • 138. Zuhailawati, H.& Salihin, H.M.& Mahani, Y., "Microstructure and properties of copper composite containing in situ NbC reinforcement: effects of milling speed", J Alloys Compd, vol. 489, 2010, p.369-374
  • 139. Zuhailawati, H.& Othman, R.& Long, B.D.& Umemoto, M., "Synthesis of copper–niobium carbide composite powder by in situ processing", J Alloys Compd, vol. 464, 2008, p.185-189
  • 140. Marques, M.T.& Livramento, V.& Correia, J.B.& Almeida, A.& Vilar, R., "Production of copper–niobium carbide nanocomposite powders via mechanical alloying", Mater Sci Eng A, vol. A399, 2005, p.382-386
  • 141. Takahashi, T.& Hashimoto, Y., "Preparation of dispersion-strengthened coppers with NbC and TaC by mechanical alloying", Mater Trans Jpn Inst Metals, vol. 32, 1991, p.389-397
  • 142. Xi, S.Q.& Zhou, J.G.& Wang, X.T.& Zhang, D.W., "The reduction of CuO by Si during milling", J Mater Sci Lett, vol. 15, 1996, p.634-635
  • 143. Takahashi, T.& Hashimoto, Y.& Koyama, K., "Preparation of TiC-dispersion-strengthened copper by the application of mechanical alloying", J Jpn Soc Powder Powder Metall, vol. 36, 1989, p.837-841
  • 144. Sabooni, S.& Mousavi, T.& Karimzadeh, F., "Mechanochemical assisted synthesis of Cu(Mo)/Al2O3 nanocomposite", J Alloys Compd, vol. 497, 2010, p.95-99
  • 145. Zhang, Z.& Chen, D.L., "Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites. A model for predicting their yield strength", Scr Mater, vol. 54, 2006, p.1321-1326
  • 146. Shehata, F.& Fathy, A.& Abdelhameed, A.& Moustafa, S.F., "Preparation and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing", Mater Des, vol. 30, 2009, p.2756-2762
  • 147. Huang, J.Y.& Wu, Y.K.& Ye, H.Q., "Ball milling of ductile metals", Mater Sci Eng A, vol. A199, 1995, p.165-172
  • 148. Zhang, X.& Wang, H.& Kassem, M.& Narayan, J.& Koch, C.C., "Preparation of bulk ultrafine-grained and nanostructured Zn, Al and their alloys by in situ consolidation of powders during mechanical attrition", Scr Mater, vol. 46, 2002, p.661-665
  • 149. Harris, A.M.& Schaffer, G.B.& Page, N.W., "The Russian doll effect by mechanical alloying", J Mater Sci Lett, vol. 12, 1993, p.1103-1104
  • 150. Takahashi, T.& Hashimoto, Y.& Koyama, K., "Preparation of the Al2O3-dispersion-strengthened copper by the application of mechanical alloying", J Jpn Soc Powder Powder Metall, vol. 36, 1989, p.404-410
  • 151. Takahashi, T.& Hashimoto, Y., "Preparation of boron carbide-dispersion-strengthened copper by the application of mechanical alloying", J Jpn Soc Powder Powder Metall, vol. 36, 1989, p.85-89
  • 152. Takahashi, T.& Hashimoto, Y., "Preparation of carbide-dispersion-strengthened coppers by mechanical alloying", Mater Sci Forum, vol. 88–90, 1992, p.175-182
  • 153. Takahashi, T., "Development of oxide- and carbide-dispersion-strengthened coppers by mechanical alloying", J Jpn Soc Powder Powder Metall, vol. 39, 1992, p.529-538
  • 154. Marques, M.T.& Livramento, V.& Correia, J.B.& Almeida, A.& Vilar, R., "Study of early stages of Cu–NbC nanocomposite synthesis", J Alloys Compd, vol. 434–435, 2007, p.481-484
  • 155. Lopez, G.A.& Mittemeijer, E.J., "The solubility of C in solid Cu", Scr Mater, vol. 51, 2004, p.1-5
  • 156. Marques, M.T.& Ferraria, A.M.& Correia, J.B.& Botelho do Rego, A.M.& Vilar, R., "XRD, XPS and SEM characterisation of Cu–NbC nanocomposite produced by mechanical alloying", Mater Chem Phys, vol. 109, 2008, p.174-180
  • 157. Takahashi, T.& Hashimoto, Y., "Mechanical properties of the TiC- and ZrC-dispersion-strengthened coppers prepared by the application of mechanical alloying", J Jpn Soc Powder Powder Metall, vol. 36, 1989, p.688-692
  • 158. Hack, G.A.J., "Dispersion strengthened alloys for aerospace", Metals Mater, vol. 3, 1987, p.457-462
  • 159. Fischer, J.J.& deBarbadillo, J.J., "High temperature alloys minimize furnace downtime", Heat Treat, vol. 23, 5, 1991, p.15-16
  • 160. Elliott, J.C.& Hack, G.A.J., "MA alloys for aerospace applications", Froes, F.H.& deBarbadillo, J.J. (Eds.), Structural applications of mechanical alloying, 1990, p.15-24
  • 161. Suryanarayana, C., "Mechanical alloying", Powder metal technologies and applications. ASM handbook, vol. vol. 7, 1998, p.80-90
  • 162. Ding, J.& Miao, W.F.& Street, R.& McCormick, P.G., "Fe3O4/Fe magnetic composite synthesized by mechanical alloying", Scr Mater, vol. 35, 1996, p.1307-1310
  • 163. Ding, J.& Miao, W.F.& Pirault, E.& Street, R.& McCormick, P.G., "Mechanical alloying of iron–hematite powders", J Alloys Compd, vol. 267, 1998, p.199-204
  • 164. Mozaffari, M.& Gheisari, M.& Niyaifar, M.& Amighian, J., "Magnetic properties of mechanochemically prepared iron–wustite (Fe–FeyO) nanocomposites", J Mag Mag Mater, vol. 321, 2009, p.2981-2984
  • 165. Elsukov, E.P.& Konygin, G.N.& Ivanov, V.V.& Zayats, S.V.& Dorofeev, G.A.& Arsent’eva, N.B. et al., "Iron–cementite nanocomposites obtained by mechanical alloying and subsequent magnetic pulsed pressing", Phys Metals Metallogr, vol. 101, 2006, p.491-497
  • 166. Pozo Lopez, G.& Silvetti, S.P., "Effect of milling time on Fe/SiO2 system prepared by mechanical alloying", Physica B, vol. 354, 2004, p.141-144
  • 167. Blackwell, J.J.& Morales, M.P.& O’Grady, K.& Gonzalez, J.M.& Cebollada, F.& Alonso-Sanudo, M., "Interactions and hysteresis behavior of Fe/SiO2 nanocomposites", J Mag Mag Mater, vol. 242–245, 2002, p.1103-1105
  • 168. Alonso-Sanudo, M.& Blackwell, J.J.& O’Grady, K.& Gonzalez, J.M.& Cebollada, F.& Morales, M.P., "Magnetic behaviour and percolation in mechanically alloyed Fe–SiO2 granular solids", J Mag Mag Mater, vol. 221, 2000, p.207-214
  • 169. Jakubowicz, J., "Application of atomic force microscopy in microstructure analysis of mechanically alloyed NdFeB/α-Fe-type nanocomposites", J Alloys Compd, vol. 351, 2003, p.196-201
  • 170. You, C.Y.& Sun, X.K.& Xiong, L.Y.& Liu, W.& Cui, B.Z.& Zhao, X.G. et al., "Effects of the precursor ingot for Nd2Fe14B/α-Fe nanocomposite magnets prepared by mechanical milling", J Mag Mag Mater, vol. 268, 2004, p.403-409
  • 171. Matteazzi, P.& Miani, F.& Basset, D., "Iron-alumina nanocomposites obtained by mechanosynthesis", Nanostruct Mater, vol. 2, 1993, p.355-360
  • 172. Guduru, R.K.& Scattergood, R.O.& Koch, C.C.& Murty, K.L.& Guruswamy, S.& McCarter, M.K., "Mechanical properties of nanocrystalline Fe–Pb and Fe–Al2O3", Scr Mater, vol. 54, 2006, p.1879-1883
  • 173. Li, J.& Kwong, F.& Shi, R.& Ng, D.H.L.& Yin, Y., "Microstructure and properties of in situ nanometric Al2O3 reinforced α-Fe(Al)–Fe3Al-based composites", Mater Sci Eng A, vol. 526, 2009, p.50-55
  • 174. Kuhrt, C., "Magnetic properties of nanocrystalline mechanically alloyed Fe–TM–C powder (TM=Ta, Hf, W, Mo, Nb, Zr, and Ti)", J Mag Mag Mater, vol. 157–158, 1996, p.235-236
  • 175. Takahashi, T.& Daichoh, H., "Preparation of the NbC-dispersion-strengthened iron powder by the application of mechanical alloying", J Jpn Soc Powder Powder Metall, vol. 37, 1990, p.656-659
  • 176. Li, J.& Liu, Q.& Shi, R.& Wen, Y.& Yin, Y., "Preparation and mechanical properties of Fe3Al(Ti)/TiC composites", J Mater Process Technol, vol. 208, 2008, p.105-110
  • 177. Rafiei, M.& Enayati, M.H.& Karimzadeh, F., "Mechanochemical synthesis of (Fe,Ti)3Al–Al2O3 nanocomposite", J Alloys Compd, vol. 488, 2009, p.144-147
  • 178. Ren, R.& Wu, Y.C.& Tang, W.M.& Wang, F.T.& Wang, T.G.& Zheng, Z.X., "Synthesis and grain growth kinetics of in-situ FeAl matrix nanocomposites (I): mechanical alloying of Fe–Al–Ti–B composite powder", Trans Nonferrous Metal Soc China, vol. 17, 2007, p.919-924
  • 179. Sachan, R.& Park, J.W., "Formation of nanodispersoids in Fe–Cr–Al/30%TiB2 composite system during mechanical alloying", J Alloys Compd, vol. 485, 2009, p.724-729
  • 180. Shon I-J, Jo S-H, Doh J-M, Yoon J-K, Park B-J. Mechanical synthesis and rapid consolidation of nanostructured FeAl–Al2O3 composites by high-frequency induction heated sintering. Ceram Int 2012;38:6035–9.
  • 181. Shon, I.-J.& Du, S.-L.& Ko, I.-Y.& Kim, T.-W.& Doh, J.-M.& Yoon, J.-K. et al., "Mechanical synthesis and rapid consolidation of a nanocrystalline 5.33Fe0.37Cr0.16Al0.4Si0.07–Al2O3 composite by high-frequency induction heating", Ceram Int, vol. 37, 2011, p.1353-1357
  • 182. Sheikhzadeh, M.& Sanjabi, S., "Structural characterization of stainless steel/TiC nanocomposites produced by high-energy ball-milling method at different milling times", Mater Des, vol. 39, 2012, p.366-372
  • 183. Agnew, S.R.& Nie, J.F., "Preface to the viewpoint set on: the current state of magnesium alloy science and technology", Scr Mater, vol. 63, 2010, p.671-673
  • 184. Hono, K.& Mendis, C.L.& Sasaki, T.T.& Oh-ishi, K., "Towards the development of heat-treatable high-strength wrought Mg alloys", Scr Mater, vol. 63, 2010, p.710-715
  • 185. Niete, G.& Kubota, K.& Higashi, K.& Hehmann, F., Cahn, R.W.& Haasen, P.& Kramer, E.J. (Eds.), Materials science and technology, vol. vol. 8, 2005, p.115-212
  • 186. Magnesium Vision 2020. A North American automotive strategic vision for magnesium. US Council for Automotive Research (USCAR), 2006. <http://www.uscar.org>.
  • 187. Hertzberg, R.W.& Vinci, R.P.& Hertzberg, J.L., "Deformation and fracture mechanics of engineering materials", 2012, 5th ed.
  • 188. Hwang, S.& Nishimura, C.& McCormick, P.G., "Compressive mechanical properties of Mg–TiC nanocomposite synthesized by mechanical milling", Scr Mater, vol. 44, 2001, p.2457-2462
  • 189. Fuster, V.& Urretavizcaya, G.& Castro, F.J., "Characterization of MgH2 formation by low-energy ball-milling of Mg and Mg+C (graphite) mixtures under H2atmosphere", J Alloys Compd, vol. 481, 2009, p.673-680
  • 190. Bystrzycki, J.& Czujko, T.& Varin, R.A., "Processing by controlled mechanical milling of nanocomposite powders Mg+X (X=Co, Cr, Mo, V, Y, Zr) and their hydrogenation properties", J Alloys Compd, vol. 404–406, 2005, p.507-510
  • 191. Vijay, R.& Sundaresan, R.& Maiya, M.P.& Srinivasa Murthy, S., "Hydrogen storage properties of Mg–Cr2O3 nanocomposites: the role of catalyst distribution and grain size", J Alloys Compd, vol. 424, 2006, p.289-293
  • 192. Wong, W.L.E.& Gupta, M., "Development of Mg/Cu nanocomposites using microwave assisted rapid sintering", Compos Sci Technol, vol. 67, 2007, p.1541-1552
  • 193. Zhu, Y.F.& Liu, Y.F.& Gu, H.& Li, L., "Structural and hydriding/dehydriding properties of Mg–La–Ni-based composites", J Alloys Compd, vol. 477, 2009, p.440-444
  • 194. Borissova, A.& Bliznakov, S.& Spassov, T., "Electrochemical hydrogen insertion in Mg–La(Mm)Ni5 nanocomposites", J Alloys Compd, vol. 434–435, 2007, p.760-763
  • 195. Bobet, J.L.& Grigorova, E.& Khrussanova, M.& Khristov, M.& Stefanov, P.& Peshev, P. et al., "Hydrogen sorption properties of graphite-modified nanocomposites prepared by ball-milling", J Alloys Compd, vol. 366, 2004, p.298-302
  • 196. Vijay, R.& Sundaresan, R.& Maiya, M.P.& Srinivasa Murthy, S., "Application of Mg–xwt.% MmNi5 (x=10–70) nanostructured composites in a hydrogen storage device", Intl J Hydrogen Energy, vol. 32, 2007, p.2390-2399
  • 197. de Castro, J.F.R.& Santos, S.F.& Costa, A.L.M.& Yavari, A.R.& Botta F, W.J.& Ishikawa, T.T., "Structural characterization and dehydrogenation behavior of Mg–5at.%Nb nano-composite processed by reactive milling", J Alloys Compd, vol. 376, 2004, p.251-256
  • 198. Tun, K.S.& Gupta, M., "Improving mechanical properties of magnesium using nano-yttria reinforcement ad microwave assisted powder metallurgy method", Compos Sci Technol, vol. 67, 2007, p.2657-2664
  • 199. Tun, K.S.& Gupta, M., "Compressive deformation behavior of Mg and Mg/(Y2O3+Ni) nanocomposites", Mater Sci Eng A, vol. A527, 2010, p.5550-5556
  • 200. Delchev, P.& Himitliiska, T.& Spassov, T., "Microstructure and hydriding properties of ball-milled Mg–10at.% MmNi5 (Mm=La, Ce-rich mischmetal) composites", J Alloys Compd, vol. 417, 2006, p.85-91
  • 201. Simchi, H.& Kaflou, A.& Simchi, A., "Synergetic effect of Ni and Nb2O5 on dehydrogenation properties of nanostructured MgH2 synthesized by high-energy mechanical alloying", Intl J Hydrogen Energy, vol. 34, 2009, p.7724-7730
  • 202. Porcu, M.& Petford-Long, A.K.& Sykes, J.M., "TEM studies of Nb2O5 catalyst in ball-milled MgH2 for hydrogen storage", J Alloys Compd, vol. 453, 2008, p.341-346
  • 203. Révész, Á& Fátay, D.& Spassov, T., "Microstructure and hydrogen sorption kinetics of Mg nanopowders with catalyst", J Alloys Compd, vol. 434–435, 2007, p.725-728
  • 204. Liang, G.& Huot, J.& Boily, S.& Van Neste, A.& Schulz, R., "Hydrogen storage properties of the mechanically milled MgH2–V nanocomposite", J Alloys Compd, vol. 291, 1999, p.295-299
  • 205. Lu, L.& Raviprasad, K.& Lai, M.O., "Nanostructured Mg–5 %Al-x%Nd alloys", Mater Sci Eng A, vol. A368, 2004, p.117-125
  • 206. Lu, L.& Lai, M.O.& Liang, W., "Magnesium nanocomposite via mechanochemical milling", Compos Sci Technol, vol. 64, 2004, p.2009-2014
  • 207. Lai, M.O.& Lu, L.& Liang, W., "Formation of magnesium nanocomposite via mechanical milling", Compos Struct, vol. 66, 2004, p.301-304
  • 208. Fang, W.& Sun, H.F.& Fang, W.B.& Wang, B., "Effect of Al and Zn additives on grain size of Mg–3Ni–2MnO2 alloy", Trans Nonferrous Metals Soc China, vol. 19, 2009, p.s355-s358
  • 209. Lei, Z.L.& Liu, Z.& Chen, Y.B., "Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and NiO", J Alloys Compd, vol. 470, 2009, p.470-472
  • 210. Li, F.& Jiang, L.& Du, J.& Wang, S.& Liu, X.P.& Zhan, F., "Investigations on synthesis and hydrogenation properties of Mg–20wt% Ni–1wt% TiO2 composite prepared by reactive mechanical alloying", J Alloys Compd, vol. 452, 2008, p.421-424
  • 211. Song, M.Y.& Kwon, S.N.& Bae, J.S.& Hong, S.H., "Hydrogen-storage properties of melt-spun Mg–23.5wt% Ni milled with nano-Nb2O5", J Alloys Compd, vol. 478, 2009, p.501-506
  • 212. Yu, Z.X.& Liu, Z.& Wang, E., "Hydrogen storage properties of nanocomposite Mg–Ni–Cu–CrCl3 prepared by mechanical alloying", Mater Sci Eng A, vol. A335, 2002, p.43-48
  • 213. Khrussanova, M.& Grigorova, E.& Mitov, I.& Radev, D.& Peshev, P., "Hydrogen sorption properties of an Mg–Ti–V–Fe nanocomposite obtained by mechanical alloying", J Alloys Compd, vol. 327, 2001, p.230-234
  • 214. Khrussanova, M.& Grigorova, E.& Bobet, J.L.& Khristov, M.& Peshev, P., "Hydrogen sorption properties of the nanocomposites Mg–Mg2Ni1−xCox obtained by mechanical alloying", J Alloys Compd, vol. 365, 2004, p.308-313
  • 215. Bobet, J.L.& Grigorova, E.& Khrussanova, M.& Khristov, M.& Radev, D.& Peshev, P., "Hydrogen sorption properties of the nanocomposites Mg–Mg2Ni1−xFex", J Alloys Compd, vol. 345, 2002, p.280-285
  • 216. Hsieh, C.T.& Wei, J.L.& Lin, J.Y.& Chen, W.Y., "Hydrogenation and dehydrogenation of Mg2Co nanoparticles and carbon nanotube composites", J Power Sour, vol. 183, 2008, p.92-97
  • 217. Imamura, H.& Nakatomi, S.& Hashimoto, Y.& Kitazawa, I.& Sakata, Y.& Mae, H. et al., "Synthesis and hydrogenation storage properties of mechanically ball-milled SiC/MgH2 nanocomposites", J Alloys Compd, vol. 488, 2009, p.265-269
  • 218. Imamura, H.& Tanaka, K.& Kitazawa, I.& Sumi, T.& Sakata, Y.& Nakayama, N. et al., "Hydrogen storage properties of nanocrystalline MgH2 and MgH2/Sn nanocomposite synthesized by ball milling", J Alloys Compd, vol. 484, 2009, p.939-942
  • 219. Grigorova, E.& Khristov, M.& Khrussanova, M.& Peshev, P., "Addition of 3d-metals with formation of nanocomposites as a way to improve the hydrogenation characteristics of Mg2Ni", J Alloys Compd, vol. 414, 2006, p.298-301
  • 220. Gao, R.G.& Tu, J.P.& Wang, X.L.& Zhang, X.B.& Chen, C.P., "The absorption and desorption properties of nanocrystalline Mg2Ni0.75Cr0.25 alloy containing TiO2 nanoparticles", J Alloys Compd, vol. 356–357, 2003, p.649-653
  • 221. Zhang, Y.H.& Jiao, L.F.& Yuan, H.& Miao, Y.L.& Wang, Q.H.& Liu, L. et al., "Study on the electrochemical properties of MgNi–CuO hydrogen storage composite materials", J Alloys Compd, vol. 481, 2009, p.639-643
  • 222. Zaluska, A.& Zaluski, L.& Ström-Olsen, J.O., "Nanocrystalline magnesium for hydrogen storage", J Alloys Compd, vol. 288, 1999, p.217-225
  • 223. Schulz, R.& Huot, J.& Liang, G.& Boily, S.& Lalande, G.& Denis, M.C. et al., "Recent developments in the applications of nanocrystalline materials to hydrogen technologies", Mater Sci Eng A, vol. A267, 1999, p.240-245
  • 224. Zaluska, A.& Zaluski, L.& Ström-Olsen, J.O., "Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage", Appl Phys A, vol. A72, 2001, p.157-165
  • 225. Orimo, S.& Fujii, H., "Materials science of Mg–Ni-based new hydrides", Appl Phys A, vol. A72, 2001, p.167-186
  • 226. Schlapbach, L.& Züttel, A., "Hydrogen storage materials for mobile applications", Nature, vol. 414, 2001, p.353-358
  • 227. Crabtree, G.W.& Dresselhaus, M.S., "The hydrogen fuel alternative", MRS Bull, vol. 33, 2008, p.421-428
  • 228. Broom, D.P., Hydrogen storage materials, The characterization of their storage properties, 2011
  • 229. Suryanarayana, C., "Nanocrystalline materials", Int Mater Rev, vol. 40, 1995, p.41-64
  • 230. Sprengel, W., Koch, C.C. (Eds.), Nanostructured materials: processing, properties, and applications, 2007, Second ed., p.331-364
  • 231. Zaluski, L.& Zaluska, A.& Ström-Olsen, J.O., "Nanocrystalline metal hydrides", J Alloys Compd, vol. 253–254, 1997, p.70-79
  • 232. Huot, J.& Liang, G.& Bobet, S.& Van Neste, A.& Schulz, R., "Structural study and hydrogen sorption kinetics of ball-milled magnesium hydride", J Alloys Compd, vol. 295, 1999, p.495-500
  • 233. Huot, J.& Liang, G.& Schulz, R., "Mechanically alloyed metal hydride systems", Appl Phys A, vol. A72, 2001, p.187-195
  • 234. Huot, J.& Pelletier, J.F.& Liang, G.& Sutton, M.& Schulz, R., "Structure of nanocomposite metal hydrides", J Alloys Compd, vol. 330–332, 2002, p.727-731
  • 235. Liang, G.& Huot, J.& Boily, S.& Schulz, R., "Hydrogen desorption kinetics of a mechanically milled MgH2+5at.% V nanocomposite", J Alloys Compd, vol. 305, 2000, p.239-245
  • 236. Oelerich, W.& Klassen, T.& Bormann, R., "Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials", J Alloys Compd, vol. 315, 2001, p.237-242
  • 237. Yavari, A.R.& de Castro, J.F.R.& Heunen, G.& Vaughan, G., "Structural evolution and metastable phase detection in MgH2–5%NbH nanocomposite during in-situ H-desorption in a synchrotron beam", J Alloys Compd, vol. 353, 2003, p.246-251
  • 238. Imamura, H.& Yoshihara, T.& Yoo, M.& Kitazawa, I.& Sakata, Y.& Ooshima, S., "Dehydriding of Sn/MgH2 nanocomposite formed by ball milling of MgH2 with Sn", Intl J Hydrogen Energy, vol. 32, 2007, p.4191-4194
  • 239. Imamura, H.& Yoshihara, T.& Yoo, M.& Kitazawa, I.& Sakata, Y.& Ooshima, S. et al., "Characteristics of hydrogen storage by Sn/MgH2 nanocomposite obtained by mechanical milling of MgH2 with Sn", Mater Sci Forum, vol. 561–565, 2007, p.1637-1640
  • 240. Liang, G.& Huot, J.& Boily, S.& Van Neste, A.& Schulz, R., "Hydrogen storage in mechanically milled Mg–LaNi5 and MgH2–LaNi5 composites", J Alloys Compd, vol. 297, 2000, p.261-265
  • 241. Barkhordarian, G.& Klassen, T.& Bormann, R., "Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst", Scr Mater, vol. 49, 2003, p.213-217
  • 242. Barkhordarian, G.& Klassen, T.& Bormann, R., "Effect of Nb2O5 content on hydrogen reaction kinetics of Mg", J Alloys Compd, vol. 364, 2004, p.242-246
  • 243. Barkhordarian, G.& Klassen, T.& Bormann, R., "Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalyzed with different Nb2O5 contents", J Alloys Compd, vol. 407, 2006, p.249-255
  • 244. Mulas, G.& Delogu, F.& Cocco, G., "Effects of mechanical processing on the kinetics of H2 absorption in Mg2Ni alloys", J Alloys Compd, vol. 473, 2009, p.180-184
  • 245. Bogdanović, B.& Schwickardi, M., "Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials", J Alloys Compd, vol. 253–254, 1997, p.1-9
  • 246. Léon, A.& Zabara, O.& Sartori, S.& Eigen, N.& Dornheim, M.& Klassen, T. et al., "Investigation of (Mg, Al, Li, H)-based hydride and alanate mixtures produced by reactive ball milling", J Alloys Compd, vol. 476, 2009, p.425-428
  • 247. Suryanarayana, C.& Inoue, A., "Bulk metallic glasses", 2011
  • 248. Jang, J.S.C.& Chang, L.J.& Young, J.H.& Huang, J.C.& Tsao, C.Y.A., "Synthesis and characterization of the Mg-based amorphous/nano-ZrO2 composite alloy", Intermetallics, vol. 14, 2006, p.945-950
  • 249. Matteazzi, P.& Le Cäer, G., "Synthesis of nanocrystalline alumina-metal composites by room-temperature ball-milling of metal oxides and aluminium", J Am Ceram Soc, vol. 75, 1992, p.2749-2755
  • 250. Heidarpour, A.& Karimzadeh, F.& Enayati, M.H., "In situ synthesis mechanism of Al2O3–Mo nanocomposite by ball milling process", J Alloys Compd, vol. 477, 2009, p.692-695
  • 251. Abbasi, A.R.& Shamanian, M., "Characterization of in situ α-Mo/Mo5SiB2 nanocomposite produced by mechanical alloying", J Alloys Compd, vol. 508, 2010, p.152-157
  • 252. Ito, K.& Ihara, K.& Tanaka, K.& Fujikura, M.& Yamaguchi, M., "Physical and mechanical properties of single crystals of the T2 phase in the Mo–Si–B system", Intermetallics, vol. 9, 2001, p.591-602
  • 253. Rioult, F.A.& Imhoff, S.D.& Sakidja, R.& Perepezko, J.H., "Transient oxidation of Mo–Si–B alloys: effect of the microstructure size scale", Acta Mater, vol. 57, 2009, p.4600-4613
  • 254. Abbasi, A.R.& Shamanian, M., "Synthesis of α-Mo–Mo5SiB2–Mo3Si nanocomposite powders by two-step mechanical alloying and subsequent heat treatment", J Alloys Compd, vol. 509, 2011, p.8097-8104
  • 255. Sakly, A.& Costa, J.& Trindade, B.& Fernandes, J.V.& Benameur, T., "Nanostructured Mo3Al-based composites strengthened by Al2O3 precipitates", J Alloys Compd, vol. 502, 2010, p.480-487
  • 256. Shi, Y.& Ding, J.& Tan, S.L.H.& Hu, Z., "Ni/Fe2O3 magnetic composite synthesized by mechanical alloying", J Mag Mag Mater, vol. 256, 2003, p.13-19
  • 257. Ismail, R.& Yaacob, I.I., "The formation of aluminides in intermetallic nickel aluminide-based nanocomposites", J Alloys Compd, vol. 392, 2005, p.214-217
  • 258. Smith, T.R.& Vechhio, K.S., "Synthesis and mechanical properties of nanoscale mechanically milled NiAl", Nanostruct Mater, vol. 5, 1995, p.11-23
  • 259. Lin, C.-K.& Hong, S.-S.& Lee, P.-Y., "Formation of NiAl–Al2O3 intermetallic-matrix composite powders by mechanical alloying technique", Intermetallics, vol. 8, 2000, p.1043-1048
  • 260. Oleszak, D., "NiAl–Al2O3 intermetallic matrix composite prepared by reactive milling and consolidation of powders", J Mater Sci, vol. 39, 2004, p.5169-5174
  • 261. Anvari, S.Z.& Karimzadeh, F.& Enayati, M.H., "Synthesis and characterization of NiAl–Al2O3 nanocomposite powder by mechanical alloying", J Alloys Compd, vol. 477, 2009, p.178-181
  • 262. Udhayabanu, V.& Ravi, K.R.& Vinod, V.& Murty, B.S., "Synthesis of in-situ NiAl–Al2O3 nanocomposite by reactive milling and subsequent heat treatment", Intermetallics, vol. 18, 2010, p.353-358
  • 263. Zhou, L.Z.& Guo, J.T.& Fan, G.J., "Synthesis of NiAl–TiC nanocomposite by mechanical alloying elemental powders", Mater Sci Eng A, vol. A249, 1998, p.103-108
  • 264. Krivoroutchko, K.& Kulik, T.& Matyja, H.& Portnoy, V.K.& Fadeeva, V., "Solid state reactions in Ni–Al–Ti–C system by mechanical alloying", J Alloys Compd, vol. 308, 2000, 230-06
  • 265. Azadehranjbar, S.& Karimzadeh, F.& Enayati, M.H., "Development of NiFe–CNT and Ni3Fe–CNT nanocomposites by mechanical alloying", Adv Powder Technol, vol. 23, 2012, p.338-342
  • 266. Park, N.-R.& Lee, D.-M.& Ko, I.-Y.& Yoon, J.-K.& Shon, I.-J., "Rapid consolidation of nanocrystalline Al2O3 reinforced Ni–Fe composite from mechanically alloyed powders by high frequency induction heated sintering", Ceram Int, vol. 35, 2009, p.3147-3151
  • 267. Guo, S.& Liu, W.& Meng, H.& Liu, X.H.& Gong, W.J.& Han, Z. et al., "Exchange bias and its training effect in Ni/NiO nanocomposites", J Alloys Compd, vol. 497, 2010, p.10-13
  • 268. Mousavi, T.& Karimzadeh, F.& Abbasi, M.H., "Mechanochemical assisted synthesis of NiTi intermetallic based nanocomposite reinforced by Al2O3", J Alloys Compd, vol. 467, 2009, p.173-178
  • 269. Meiklejohn, W.H.& Bean, C.P., "New magnetic anisotropy", Phys Rev, vol. 102, 1956, p.1413-1414
  • 270. Nogués, J.& Sort, J.& Langlais, V.& Skumryev, V.& Suriñach, S.& Muñoz, J.S. et al., "Exchange bias in nanostructures", Phys Rep, vol. 422, 2005, p.65-117
  • 271. Mousavi, T.& Karimzadeh, F.& Abbasi, M.H., "Synthesis and characterization of nanocrystalline NiTi intermetallic by mechanical alloying", Mater Sci Eng A, vol. A487, 2008, p.46-51
  • 272. Froes, F.H.& Suryanarayana, C.& Eliezer, D., "Synthesis, properties, and applications of titanium aluminides", J Mater Sci, vol. 27, 1992, p.5113-5140
  • 273. Appel, F.& Wagner, R., "Microstructure and deformation of two-phase γ-titanium aluminides", Mater Sci Eng Reports, vol. R22, 1998, p.187-268
  • 274. Wang, X.& Li, Y.& Wei, J.& de Groot, K., "Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites", Biomaterials, vol. 23, 2002, p.4787-4791
  • 275. Pang, P.& Li, W.& Liu, Y., "Effect of ball milling process on the microstructure of titanium–nanohydroxyapatite composite powder", Rare Metals (China), vol. 26, 2007, p.118-123
  • 276. Chu, C.& Lin, P.& Dong, Y.& Xue, X.& Zhu, J.& Yin, Z., "Fabrication and characterization of hydroxyapatite reinforced with 20vol.% Ti particles for use as hard tissue replacement", J Mater Sci Mater Med, vol. 13, 2002, p.985-992
  • 277. Jakubowicz, J.& Jurczyk, K.& Niespodziana, K.& Jurczyk, M., "Mechanoelectrochemical synthesis of porous Ti-based nanocomposite biomaterials", Electrochem Commun, vol. 11, 2009, p.461-465
  • 278. Massalski, T.B. (Eds.), Binary alloy phase diagrams, 1990
  • 279. Takahashi, T., "In-situ preparation of TiB-reinforced titanium by mechanical alloying", deBarbadillo, J.J.& Froes, F.H.& Schwarz, R.B. (Eds.), Proceedings of the 2nd international conference on mechanical alloying for structural applications, 1993, p.307-312
  • 280. Suryanarayana, C.& Froes, F.H.& Rowe, R.G., "Rapid solidification processing of titanium alloys", Int Mater Rev, vol. 36, 1991, p.85-123
  • 281. Suryanarayana, C.& Sundaresan, R.& Froes, F.H., "Mechanical alloying of reactive and refractory metals", Gasbarre, T.G.& Jandeska Jr., W.F. et al. (Eds.), Advances in powder metallurgy, vol. vols. 1–3, 1989, p.175-188
  • 282. Suryanarayana, C.& Sundaresan, R.& Froes, F.H., "Mechanical alloying of titanium alloys", Froes, F.H.& deBarbadillo, J.J. (Eds.), Structural applications of mechanical alloying, 1990, p.193-201
  • 283. Zhang, D.L.& Liang, J.& Wu, J., "Processing Ti3Al–SiC nanocomposites using high energy mechanical milling", Mater Sci Eng A, vol. A375–377, 2004, p.911-916
  • 284. Gu, D.D.& Wang, Z.& Shen, Y.& Li, Q.& Li, Y., "In-situ TiC particle reinforced Ti–Al matrix composites: powder preparation by mechanical alloying and selective laser melting behavior", Appl Surf Sci, vol. 255, 2009, p.9230-9240
  • 285. Gu, D.D.& Meiners, W.& Li, C.& Shen, Y., "In situ synthesized TiC/Ti5Si3 nanocomposites by high-energy mechanical alloying: microstructural development and its mechanism", Mater Sci Eng A, vol. A527, 2010, p.6340-6345
  • 286. Munir, Z.A., "Synthesis of high temperature materials by self-propagating combustion methods", Am Ceram Soc Bull, vol. 67, 1988, p.342-349
  • 287. Travitzky, N.& Gotman, I.& Claussen, N., "Alumina–Ti aluminide interpenetrating composites: microstructure and mechanical properties", Mater Lett, vol. 57, 2003, p.3422-3426
  • 288. Claussen, N.& Garcia, D.E.& Janssen, R., "Reaction sintering of alumina–aluminide alloys (3A)", J Mater Res, vol. 11, 1996, p.2884-2888
  • 289. Welham, N.J., "Mechanical activation of the formation of an alumina–titanium trialuminide composite", Intermetallics, vol. 6, 1998, p.363-368
  • 290. Forouzanmehr, N.& Karimzadeh, F.& Enayati, M.H., "Synthesis and characterization of TiAl/α-Al2O3 nanocomposite by mechanical alloying", J Alloys Compd, vol. 478, 2009, p.257-259
  • 291. Horvitz, D.& Gotman, I.& Gutmanas, E.Y.& Claussen, N., "In situ processing of dense Al2O3–Ti aluminide interpenetrating phase composites", J Eur Ceram Soc, vol. 22, 2002, p.947-954
  • 292. Li, J.L.& Li, F.& Hu, K., "Preparation of Ni/Al2O3 nanocomposite powder by high-energy ball milling and subsequent heat treatment", J Mater Process Technol, vol. 147, 2004, p.236-240
  • 293. Alamolhoda, S.& Heshmati-Manesh, S.& Ataie, A., "Mechano-Thermal treatment of TiO2–Al powder mixture to prepare TiAl/Al2O3 composite", Metals Mater Int, vol. 17, 2011, p.743-748
  • 294. Cai, Z.H.& Zhang, D.L., "Sintering behaviour and microstructures of Ti(Al,O)/Al2O3, Ti3Al(O)/Al2O3 and TiAl(O)/Al2O3 in situ composites", Mater Sci Eng A, vol. A419, 2006, p.310-317
  • 295. Shon, I.-J.& Na, K.-I.& Suh, C.-Y.& Cho, S.-W.& Oh, S.-H.& Kim, W.B., "Rapid Consolidation of nanocrystalline Ti3Al–Al2O3 composites from mechanically synthesized powders by high frequency induction heated sintering", Metals Mater Int, vol. 17, 2011, p.737-741
  • 296. Mao, S.X.& McMinn, N.A.& Wu, N.Q., "Processing and mechanical behaviour of TiAl/NiAl intermetallic composites produced by cryogenic mechanical alloying", Mater Sci Eng A, vol. A363, 2003, p.275-289
  • 297. Liu, K.W.& Zhang, J.S.& Wang, J.G.& Chen, G.L., "Formation of TiAl/Ti5Si3 nanocomposite by mechanical alloying and subsequent annealing", Scr Mater, vol. 36, 1997, p.1113-1117
  • 298. Liu, K.W.& Zhang, J.S.& Wang, J.G.& Chen, G.L., "Formation of intermetallic nanocomposites in the Ti–Al–Si system by mechanical alloying and subsequent heat treatment", J Mater Res, vol. 13, 1998, p.1198-1203
  • 299. Bohn, R.& Klassen, T.& Bormann, R., "Room temperature mechanical behavior of silicon-doped TiAl alloys with grain sizes in the nano- and submicron-range", Acta Mater, vol. 49, 2001, p.299-311
  • 300. Bohn, R.& Klassen, T.& Bormann, R., "Mechanical behavior of submicron-grained γ-TiAl-based alloys at elevated temperatures", Intermetallics, vol. 9, 2001, p.559-569
  • 301. Rao, K.P.& Zhou, J.B., "Characterization and mechanical properties of in situ synthesized Ti5Si3/TiAl composites", Mater Sci Eng A, vol. A356, 2003, p.208-218
  • 302. Klassen T, Bohn R, Suryanarayana C, Fanta G, Bormann R. Mechanical properties of ultrafine-grained titanium aluminide/titanium silicide composites prepared by high energy milling. In: Shaw L, Suryanarayana C, Mishra RS, editors. Processing and properties of structural nanomaterials. Warrendale (PA): TMS; 2003. p. 93–100.
  • 303. Klassen, T.& Suryanarayana, C.& Bormann, R., "Low temperature superplasticity in ultrafine-grained Ti5Si3–TiAl composites", Scr Mater, vol. 59, 2008, p.455-458
  • 304. Lu, J.Q.& Qin, J.& Lu, W.& Liu, Y.& Gu, J.& Zhang, D., "In situ preparation of (TiB+TiC+Nd2O3)/Ti composites by powder metallurgy", J Alloys Compd, vol. 469, 2009, p.116-122
  • 305. Brand, K.& Suryanarayana, C.& Kieback, B.F.& Froes, F.H., "Phase formation during ball milling of Ti–Al–B powders", Mater Sci Forum, vol. 225–227, 1996, p.471-476
  • 306. Koga, T.& Mizuno, M.& Nagumo, M., "Structural and mechanical properties of fine composites prepared by Ti–Si3N4 solid state reactions", Mater Sci Eng A, vol. A179/180, 1994, p.153-175
  • 307. Inoue, A.& Kita, K.& Zhang, T.& Masumoto, T., "An amorphous La55AI25Ni20 alloy prepared by water quenching", Mater Trans Jpn Inst Metals, vol. 30, 1989, p.722-725
  • 308. Peker, A.& Johnson, W.L., "A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5", Appl Phys Lett, vol. 63, 1993, p.2342-2344
  • 309. Miller, M.K.& Liaw, P.K. (Eds.), Bulk metallic glasses, 2008
  • 310. Suryanarayana, C., "Mechanical properties of emerging materials", Mater Today, vol. 15, 2012, p.486-498
  • 311. Jeng, I.-K.& Lin, C.-K.& Lee, P.-Y., "Formation and characterization of mechanically alloyed Ti–Cu–Ni–Sn bulk metallic glass composite", Intermetallics, vol. 14, 2006, p.957-961
  • 312. German, R.M., Bose, A.& Dowding, R.J. (Eds.), Proceedings of the international conference on tungsten and tungsten alloys, 1992, p.1
  • 313. da Costa, F.A.& da Silva, A.G.P.& Filho, F.A.& Gomes, U.U.& Vieira, F.A., "Synthesis of a nanocrystalline composite W–25wt.%Ag powder by high energy milling", Powder Technol, vol. 188, 2008, p.30-33
  • 314. Alam, S.N., "Synthesis and characterization of W–Cu nanocomposites developed by mechanical alloying", Mater Sci Eng A, vol. A433, 2006, p.161-168
  • 315. Maneshian, A.H.& Simchi, A.& Razavi Hesabi, Z., "Structural changes during synthesizing of nanostructured W–20wt.% Cu composite powder by mechanical alloying", Mater Sci Eng A, vol. A445–446, 2007, p.86-93
  • 316. Eghtesadi, S.& Parvin, N.& Rezaee, M.& Salari, M., "Mechanically induced driving forces in preparing W–Cu nanocomposite", J Alloys Compd, vol. 473, 2009, p.557-559
  • 317. Zhang, Z.W.& Zhou, J.E.& Xi, S.Q.& Ran, G.& Li, P.L., "Phase transformation and thermal stability of mechanically alloyed W–Ni–Fe composite materials", Mater Sci Eng A, vol. A379, 2004, p.148-153
  • 318. Coşkun, S.& Öveçoğlu, M.L.& Özkal, B.& Tanoglu, M., "Characterization investigations during mechanical alloying and sintering of W–20vol.% SiC composites", J Alloys Compd, vol. 492, 2010, p.576-584
  • 319. Genç, A.& Coşkun, S.& Öveçoğlu, M.L., "Microstructural characterizations of Ni activated sintered W–2wt% TiC composites produced via mechanical alloying", J Alloys Compd, vol. 497, 2010, p.80-89
  • 320. Zhang, T.Q.& Wang, Y.J.& Zhou, Y.& Song, G.M., "Effect of ZrC particle size on microstructure and room temperature mechanical properties of ZrCp/W composites", Mater Sci Eng A, vol. A527, 2010, p.4021-4027
  • 321. Shi, X.L.& Yang, H.& Shao, G.Q.& Duan, X.L.& Yan, L.& Xiong, Z. et al., "Fabrication and properties of W–Cu alloy reinforced by multi-walled carbon nanotubes", Mater Sci Eng A, vol. A457, 2007, p.18-23
  • 322. Cutler RA. Engineering properties of borides. In: Engineered materials handbook, ceramics and glasses, vol. 4. Materials Park (OH): ASM International; 1991. p. 787–803.
  • 323. Li, J.L.& Hu, K.& Zhou, Y., "Formation of TiB2/TiN nanocomposite powder by high energy ball milling and subsequent heat treatment", Mater Sci Eng A, vol. A326, 2002, p.270-275
  • 324. Abbasi, A.R.& Shamanian, M., "Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment", Mater Sci Eng A, vol. A528, 2011, p.3295-3301
  • 325. Li, J.L.& Li, F.& Hu, K.& Zhou, Y., "TiB2/TiC nanocomposite powder fabricated via high-energy ball milling", J Eur Ceram Soc, vol. 21, 2001, p.2829-2833
  • 326. Lu, C.J.& Li, Z.Q., "Structural evolution of TiH2–B4C during ball milling and subsequent heat treatment", J Alloys Compd, vol. 448, 2008, p.198-201
  • 327. Li, J.L.& Li, F.& Hu, K.& Zhou, Y., "Formation of TiB2/TiN/Ti(CxN1−x) nanocomposite powder via high-energy ball milling and subsequent heat treatment", J Alloys Compd, vol. 334, 2002, p.253-260
  • 328. Liu, Q.& Han, W.B.& Han, J.C., "Influence of SiCnp content on the microstructure and mechanical properties of ZrB2–SiC nanocomposite", Scr Mater, vol. 63, 2010, p.581-584
  • 329. Toth, L.E., "Transition metal carbides and nitrides", 1971
  • 330. Jiang, T.& Jin, Z.H.& Yang, J.F.& Qiao, G.J., "Mechanical property and R-curve behavior of the B4C/BN ceramics composites", Mater Sci Eng A, vol. A494, 2008, p.203-216
  • 331. He, J.& Ice, M.& Lavernia, E.J., "Synthesis and characterization of nanostructured Cr3C2–NiCr", Nanostruct Mater, vol. 10, 1998, p.1271-1283
  • 332. Razavi, M.& Rahimipour, M.R.& Mansoori, R., "Synthesis of TiC–Al2O3 nanocomposite powder from impure Ti chips, Al and carbon black by mechanical alloying", J Alloys Compd, vol. 450, 2008, p.463-467
  • 333. Woo, K.D.& Kim, B.R.& Kwon, E.P.& Kang, D.S.& Shon, I.J., "Properties and rapid consolidation of nanostructured TiC-based hard materials with various binders by a high-frequency induction heated sintering", Ceram Int, vol. 36, 2010, p.351-355
  • 334. Wang, L.J.& Jiang, W.& Chen, L., "Fabrication and characterization of nano-SiC particles reinforced TiC/SiCnano composites", Mater Lett, vol. 58, 2004, p.1401-1404
  • 335. Xueming, M.A.& Gang, J.I., "Nanostructured WC–Co alloy prepared by mechanical alloying", J Alloys Compd, vol. 245, 1996, p.L30-L32
  • 336. Sherif El-Eskandarany, M.& Mahday, A.A.& Ahmed, H.A.& Amer, A.H., "Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC–Co powders and subsequent consolidations", J Alloys Compd, vol. 312, 2000, p.315-325
  • 337. Shon, I.J.& Jeong, I.K.& Ko, I.Y.& Doh, J.M.& Woo, K.D., "Sintering behavior and mechanical properties of WC–10Co, WC–10Ni and WC–10Fe hard materials produced by high-frequency induction heated sintering", Ceram Int, vol. 35, 2009, p.339-344
  • 338. Enayati, M.H.& Aryanpour, G.R.& Ebnonnasir, A., "Production of nanostructured WC–Co powder by ball milling", Int J Refract Metals Hard Mater, vol. 27, 2009, p.159-163
  • 339. Sherif El-Eskandarany, M., "Fabrication and characterizations of new nanocomposite WC/Al2O3 materials by room temperature ball milling and subsequent consolidation", J Alloys Compd, vol. 391, 2005, p.228-235
  • 340. Sherif El-Eskandarany, M., "Fabrication of nanocrystalline WC and nanocomposite WC–MgO refractory materials at room temperature", J Alloys Compd, vol. 296, 2000, p.175-182
  • 341. Kim, H.C.& Park, H.K.& Jeong, I.K.& Ko, I.Y.& Shon, I.J., "Sintering of binderless WC–Mo2C hard materials by rapid sintering process", Ceram Int, vol. 34, 2008, p.1419-1423
  • 342. Shon, I.J.& Na, K.I.& Ko, I.Y.& Doh, J.M.& Yoon, J.K., "Effect of FeAl3 on properties of (W,Ti)C–FeAl3 hard materials consolidated by a pulsed current activated sintering method", Ceram Int, vol. 38, 2012, p.5133-5138
  • 343. Shon, I.J.& Kim, B.R.& Doh, J.M.& Yoon, J.K., "Consolidation of binderless nanostructured titanium carbide by high frequency induction heated sintering", Ceram Int, vol. 36, 2010, p.1797-1803
  • 344. Wang, L.J.& Jiang, W.& Chen, L., "Rapidly sintering nanosized SiC particle reinforced TiC composites by the spark plasma sintering (SPS) technique", J Mater Sci, vol. 39, 2004, p.4515-4519
  • 345. Wang, L.J.& Jiang, W.& Chen, L.& Bai, S.Q., "Rapid reactive synthesis and sintering of submicron TiC/SiC composites through spark plasma sintering", J Am Ceram Soc, vol. 87, 2004, p.1157-1160
  • 346. Wang, H.H.& Wu, W.Y.& Sun, S.C.& Bian, X.& Tu, G.F., "Characterization of the structure of TiB2/TiC nanocomposite powders fabricated by high-energy ball milling", Ceram Int, vol. 37, 2011, p.2689-2693
  • 347. Zhang, F.L.& Wang, C.W.& Zhu, M., "Nanostructured WC/Co composite powder prepared by high energy ball milling", Scr Mater, vol. 49, 2003, p.1123-1128
  • 348. Huang, J.Y.& Wu, Y.K.& Ye, H.Q., "Allotropic transformation of cobalt induced by ball milling", Acta Mater, vol. 44, 1996, p.1201-1209
  • 349. Hewitt, S.A.& Kibble, K.K., "Effects of ball milling time on the synthesis and consoliation of nanostructured WC–10Co composites", Int J Refract Metals Hard Mater, vol. 27, 2009, p.937-948
  • 350. Hewitt, S.A.& Laoui, T.& Kibble, K.K., "Effect of milling temperature on the synthesis and consolidation of nanocomposite WC–10Co powders", Int J Refract Metals Hard Mater, vol. 27, 2009, p.66-73
  • 351. Wu, C.X.& Zhu, S.G.& Ma, J.& Zhang, M.L., "Synthesis and formation mechanisms of nanocomposite WC–MgO powders by high-energy reactive milling", J Alloys Compd, vol. 478, 2009, p.615-619
  • 352. Ding, J.& Liu, B.H.& Dong, Z.L.& Zhong, Z.Y.& Lin, J.Y.& White, T., "The preparation of Al2O3/M (Fe, Co, Ni) nanocomposites by mechanical alloying and the catalytic growth of carbon nanotubes", Composites, vol. B35, 2004, p.103-109
  • 353. Mohammad Sharifi, E.& Karimzadeh, F.& Enayati, M.H., "A study on mechanochemical behavior of B2O3–Al system to produce alumina-based nanocomposite", J Alloys Compd, vol. 482, 2009, p.110-513
  • 354. Shon, I.J.& Ko, I.Y.& Kang, H.S.& Hong, K.T.& Doh, J.M.& Yoon, J.K., "Properties and rapid consolidation of nanostructured Al2O3–Al2SiO5 composites by high frequency induction heated sintering", Ceram Int, vol. 37, 2011, p.2159-2164
  • 355. Yang, Y.& Wang, Y.& Tian, W.& Zhao, Y.& He, J.Q.& Bian, H.M. et al., "In situ alumina/aluminum titanate bulk ceramic composites prepared by SPS from different structured composite powders", J Alloys Compd, vol. 481, 2009, p.858-862
  • 356. Hosseini, S.N.& Karimzadeh, F.& Enayati, M.H., "Mechanochemical synthesis of Al2O3/Co nanocomposite by aluminothermic reaction", Adv Powder Technol, vol. 23, 2012, p.334-337
  • 357. Guichard, J.L.& Tillement, O.& Mocellin, A., "Alumina–chromium cermets by hot-pressing of nanocomposite powders", J Eur Ceram Soc, vol. 18, 1998, p.1743-1752
  • 358. Guichard, J.L.& Tillement, O.& Mocellin, A., "Preparation and characterization of alumina–iron cermets by hot-pressing of nanocomposite powders", J Mater Sci, vol. 32, 1997, p.4513-4521
  • 359. Li, J.L.& Li, F.& Hu, K., "Preparation of Ni/Al2O3 nanocomposite powder by high-energy ball milling and subsequent heat treatment", J Mater Process Technol, vol. 147, 2004, p.236-240
  • 360. Ko, Y.M.& Kwon, W.T.& Kim, Y.W., "Development of Al2O3–SiC composite tool for machining application", Ceram Int, vol. 39, 2004, p.2081-2086
  • 361. Dunlap, R.A.& Kehoe, S.W.& Dahn, J.R.& O’Brien, J.W., "Preparation of nanocomposite alumina–Sn2Fe by mechanical alloying", J Alloys Compd, vol. 400, 2005, p.252-256
  • 362. Mohammad Sharifi, E.& Karimzadeh, F.& Enayati, M.H., "Preparation of Al2O3–TiB2 nanocomposite powder by mechanochemical reaction between Al, B2O3 and Ti", Adv Powder Technol, vol. 22, 2011, p.526-531
  • 363. Zhang, Y.F.& Wang, L.J.& Jiang, W.& Chen, L.& Bai, G.Z., "Microstructure and properties of Al2O3–TiC nanocomposites fabricated by spark plasma sintering from high-energy ball milled reactants", J Eur Ceram Soc, vol. 26, 2006, p.3393-3397
  • 364. Mohammad Sharifi, E.& Karimzadeh, F.& Enayati, M.H., "Mechanochemically synthesized Al2O3–TiC nanocomposite", J Alloys Compd, vol. 491, 2010, p.411-415
  • 365. Alkebro, J.& Begin-Colin, S.& Mocellin, A.& Warren, R., "Mechanical alloying of alumina–yttria powder mixtures", J Eur Ceram Soc, vol. 20, 2000, p.2169-2174
  • 366. Maneshian, M.H.& Banerjee, M.K., "Effect of sintering on structure and mechanical properties of alumina–15vol.% zirconia nanocomposite compacts", J Alloys Compd, vol. 493, 2010, p.613-618
  • 367. Maneshian, M.H.& Banerjee, M.K., "Reverse martensitic transformation in alumina–15vol.% zirconia nanostructured powder synthesized by high energy ball milling", J Alloys Compd, vol. 459, 2008, p.531-536
  • 368. Lee, K.T.& Kim, D.K.& Park, J.H.& Shon, I.J., "Effect of Fe2O3 on properties and densification of Ce0.8Gd0.2O2−δ by PCAS", Ceram Int, vol. 35, 2009, p.1345-1351
  • 369. Wang, X.& Wen, Z.& Yang, X.L.& Lin, B., "Nanosized tin-based composite derived by in situ mechanochemical reduction for lithium ion batteries", Solid State Ionics, vol. 179, 2008, p.1238-1241
  • 370. Shon, I.J.& Ko, I.Y.& Kang, H.S.& Hong, K.T.& Doh, J.M.& Yoon, J.K., "Properties and rapid consolidation of nanostructured MgO–MgAl2O4 composites", Ceram Int, vol. 38, 2012, p.311-316
  • 371. Pozo-López, G.& Silvetti, S.P., "Effect of milling time on Fe/SiO2 system prepared by mechanical alloying", Physica B, vol. 354, 2004, p.141-144
  • 372. Pozo-López, G.& Silvetti, S.P.& Cabrera, A.F.& Condó, A.M., "Structural and magnetic studies of Fe2O3/SiO2 granular nanocomposites", Physica B, vol. 404, 2009, p.2777-2779
  • 373. Zaman, S.A.K.& Palaniandy, S.& Hussain, Z., "Mechanochemical synthesis of nanostructured SiO2–SiC composite through high-energy milling", J Alloys Compd, vol. 502, 2010, p.250-256
  • 374. Ting, P.K.& Hussain, Z.& Cheong, K.Y., "Synthesis and characterization of silica–titania nanocomposite via a combination of sol–gel and mechanochemical process", J Alloys Compd, vol. 466, 2008, p.304-307
  • 375. Santos, C.& Koizumi, M.H.& Daguano, J.K.M.F.& Santos, F.A.& Elias, C.N.& Ramos, A.S., "Properties of Y-TZP/Al2O3 ceramic nanocomposites obtained by high-energy ball milling", Mater Sci Eng A, vol. A501, 2009, p.6-12
  • 376. Acchar, W.& Fontes Silva, Y.B.& Cairo, C.A., "Mechanical properties of hot-pressed ZrO2 reinforced with (W,Ti)C and Al2O3 additions", Mater Sci Eng A, vol. A527, 2010, p.480-484
  • 377. Shi, X.& Pan, Y.& Guo, J., "Fabrication and magnetic properties of cobalt-dispersed alumina composites", Ceram Int, vol. 33, 2007, p.1509-1513
  • 378. Tai, W.P.& Kim, Y.S.& Kim, J.G., "Fabrication and magnetic properties of Al2O3/Co nanocomposites", Mater Chem Phys, vol. 82, 2003, p.396-400
  • 379. Li, J.G.& Ni, X.& Wang, G., "Microstructure and magnetic properties of Co/Al2O3 nanocomposite powders", J Alloys Compd, vol. 440, 2007, p.349-356
  • 380. Tuan, W.H.& Brook, R.J., "The toughening of alumina with nickel inclusions", J Eur Ceram Soc, vol. 6, 1990, p.31-37
  • 381. Sekino, T.& Nakajima, T.& Ueda, S.& Niihara, K., "Reduction and sintering of a nickel-dispersed-alumina composite and its properties", J Am Ceram Soc, vol. 80, 1997, p.1139-1148
  • 382. Sekino, T.& Nakajima, T.& Niihara, K., "Mechanical and magnetic properties of nickel dispersed alumina-based nanocomposite", Mater Lett, vol. 29, 1996, p.165-169
  • 383. Yan, Q.F.& Wang, G.Y.& Huang, Z.& Jiang, D.L., "A microstructure study of Ni/Al2O3 composite ceramics", J Alloys Compd, vol. 467, 2009, p.438-443
  • 384. Dong, Y.L.& Xu, F.M.& Shi, X.L.& Zhang, C.& Zhang, Z.J.& Yang, J.M. et al., "Fabrication and mechanical properties of nano-/micro-sized Al2O3/SiC composites", Mater Sci Eng A, vol. A504, 2009, p.49-54
  • 385. Mao, O.& Dunlap, R.A.& Dahn, J.R., "Mechanically alloyed Sn–Fe(–C) powders as anode materials for Li-ion batteries: I. The Sn2Fe–C system", J Electrochem Soc, vol. 146, 1999, p.405-413
  • 386. Deng, J.X.& Liu, L.& Liu, J.H.& Zhao, J.L.& Yang, X.F., "Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys", Int J Mach Tools Manuf, vol. 45, 2005, p.1393-1401
  • 387. Mohammad Sharifi, E.& Karimzadeh, F.& Enayati, M.H., "Synthesis of titanium diboride reinforced alumina matrix nanocomposite by mechanochemical reaction of Al–TiO2–B2O3", J Alloys Compd, vol. 502, 2010, p.508-512
  • 388. Khagani-Dehaghani, M.A.& Ebrahimi-Kahrizsangi, R.& Setoudeh& Nasiri-Tabrizi, "Mechanochemical synthesis of Al2O3–TiB2 nanocomposite powder from Al–TiO2–H3BO3 mixture", Int J Refract Metals Hard Mater, vol. 29, 2011, p.244-249
  • 389. Park, J.H.& Yoon, J.K.& Doh, J.M.& Lee, B.S.& Shon, I.J., "Simultaneous high-frequency induction heated combustion synthesis and consolidation of nanostructured HfSi2–SiC composite", Ceram Int, vol. 35, 2009, p.1677-1681
  • 390. Vasudevan, A.K.& Petrovic, J.J., "A comparative overview of molybdenum disilicide composites", Mater Sci Eng A, vol. A155, 1992, p.1-17
  • 391. Yazdani-rad, R.& Mirvakili, S.A.& Zakeri, M., "Synthesis of (Mo1−x–Crx)Si2 nanostructured powders via mechanical alloying and following heat treatment", J Alloys Compd, vol. 489, 2010, p.379-383
  • 392. Zhang, H.& Wang, D.& Chen, S.& Liu, X., "Toughening of MoSi2 doped by La2O3 particles", Mater Sci Eng A, vol. A345, 2003, p.118-121
  • 393. Yoon, J.K.& Kim, G.H.& Han, J.H.& Shon, I.J.& Doh, J.M.& Hong, K.T., "Low-temperature cyclic oxidation behavior of MoSi2/Si3N4 nanocomposite coating formed on Mo substrate at 773K", Surf Coat Technol, vol. 200, 2005, p.2537-2546
  • 394. Ko, I.Y.& Kang, H.S.& Doh, J.M.& Yoon, J.K.& Shon, I.J., "Properties and densification of nanocrystalline MoSi2–Si3N4 composite from mechanically alloyed powders by pulsed current-activated sintering", J Alloys Compd, vol. 502, 2010, p.L10-L13
  • 395. Suryanarayana, C., "Structure and properties of ultrafine-grained MoSi2+Si3N4 composites synthesized by mechanical alloying", Mater Sci Eng A, vol. A479, 2008, p.23-30
  • 396. Petrovic, J.J., "Toughening strategies for MoSi2-based high temperature structural silicides", Intermetallics, vol. 8, 2000, p.1175-1182
  • 397. Zhang, H.& Chen, P.& Wang, M.J.& Liu, X.W., "Room-temperature mechanical properties of WSi2/MoSi2 composites", Rare Metals, vol. 21, 2002, p.304-307
  • 398. Xu, J.G.& Wu, H.J.& Li, B., "Synthesis of MoSi2/WSi2 nanocrystalline powder by mechanical assistant combustion synthesis method", Int J Refract Metals Hard Mater, vol. 28, 2010, p.217-220
  • 399. Krakhmalev, P.V., "Preparation of Mo(Si,Al)2–ZrO2 nanocomposite powders by mechanical alloying", Int J Refract Metals Hard Mater, vol. 22, 2004, p.205-209
  • 400. Fan, G.J.& Quan, M.X.& Hu, Z.Q.& Eckert, J.& Schultz, L., "In situ explosive formation of NbSi2-based nanocomposites by mechanical alloying", Scr Mater, vol. 41, 1999, p.1147-1151
  • 401. Shon, I.J.& Park, H.K.& Kim, H.C.& Yoon, J.K.& Ko, I.Y., "Simultaneous pulsed current activated combustion synthesis and densification of NbSi2–SiC composite", Ceram Int, vol. 34, 2008, p.615-619
  • 402. Murakami, T.& Sasaki, S.& Ichikawa, K.& Kitahara, A., "Microstructure, mechanical properties and oxidation behavior of Nb–Si–Al and Nb–Si–N powder compacts prepared by spark plasma sintering", Intermetallics, vol. 9, 2001, p.621-628
  • 403. Park, H.K.& Park, J.H.& Yoon, J.K.& Ko, I.Y.& Doh, J.M.& Shon, I.J., "Simultaneous synthesis and consolidation of nanostructured TaSi2–Si3N4 composite by pulsed current activated combustion", Ceram Int, vol. 35, 2009, p.99-104
  • 404. Shon, I.J.& Park, J.H.& Ko, I.Y.& Doh, J.M.& Yoon, J.K.& Nam, K.S., "Properties and consolidation of nanocrystalline WSi2–SiC composite from mechanically activated powders by pulsed current activated combustion synthesis", Ceram Int, vol. 37, 2011, p.1549-1555
  • 405. Ko, I.Y.& Park, J.H.& Yoon, J.K.& Nam, K.S.& Shon, I.J., "ZrSi2–SiC composite from mechanically activated ZrC+3Si powders by pulsed current activated combustion synthesis", Ceram Int, vol. 36, 2010, p.817-820
  • 406. Amini Mashhadi, H.& Manikandan, P.& Suetsugu, R.& Tanaka, S.& Hokamoto, K., "Synthesis of AlN–TiN nanostructured composite powder by reactive ball milling and subsequent thermal treatment", J Alloys Compd, vol. 506, 2010, p.653-660
  • 407. Park, C.M.& Sohn, H.J., "A mechano- and electrochemically controlled SnSb/C nanocomposite for rechargeable Li-ion batteries", Electrochim Acta, vol. 54, 2009, p.6367-6373
  • 408. Kim, I.S.& Kumta, P.N.& Blomgren, G.E., "Si/TiN nanocomposites novel anode materials for Li-ion batteries", Electrochem Solid State Lett, vol. 3, 2000, p.493-496
  • 409. Kim, I.S.& Blomgren, G.E.& Kumta, P.N., "Nanostructured Si/TiB2 composite anodes for Li-ion batteries", Electrochem Solid State Lett, vol. 6, 2003, p.A157-A161
  • 410. Kim, I.S.& Blomgren, G.E.& Kumta, P.N., "Si–SiC nanocomposite anodes synthesized using high-energy mechanical milling", J Power Sour, vol. 130, 2004, p.275-280
  • 411. Kim, I.S.& Kumta, P.N., "High capacity Si/C nanocomposite anodes for Li-ion batteries", J Power Sour, vol. 136, 2004, p.145-149
  • 412. Patel, P.& Kim, I.S.& Kumta, P.N., "Nanocomposites of silicon/titanium carbide synthesized using high-energy mechanical milling for use as anodes in lithium-ion batteries", Mater Sci Eng B, vol. B116, 2005, p.347-352
  • 413. Gu, H.& Chen, H.& Guo, L., "Effect of nano-Al2O3 and Y2O3 on the properties and microstructure of Si3N4", Mater Sci Eng A, vol. A491, 2008, p.177-181
  • 414. Le Cäer, G.& Bauer-Grosse, E.& Pianelli, A.& Bouzy, E.& Matteazzi, P., "Mechanically driven syntheses of carbides and silicides", J Mater Sci, vol. 25, 1990, p.4726-4731
  • 415. Matteazzi, P.& Le Cäer, G., "Room-temperature mechanosynthesis of carbides by grinding of elemental powders", J Am Ceram Soc, vol. 74, 1991, p.1382-1390
  • 416. Nikolov, J.I.& Calka, A.& Williams, J.S., "The effect of milling condition on micro/macrostructural transformations during milling of B and Si in nitriding environment: formation of BN and Si3N4", Nanostruct Mater, vol. 6, 1995, p.401-404
  • 417. Shaw, L.L.& Yang, G.Z.& Ren, R.M., "Synthesis of nanostructured Si3N4/SiC composite powders through high energy reaction milling", Mater Sci Eng A, vol. A244, 1998, p.113-126
  • 418. Karimzadeh, F.& Enayati, M.H.& Tavoosi, M., "Synthesis and characterization of Zn/Al2O3 nanocomposite by mechanical alloying", Mater Sci Eng A, vol. A486, 2008, p.45-48
Kolekcja
Elsevier
Identyfikator YADDA
bwmeta1.element.elsevier-af494ed4-c934-38b8-9bae-babe8b7a38b0
Identyfikatory
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.