Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 43 | 1 | 262-279
Tytuł artykułu

GA based frequency controller for solar thermal–diesel–wind hybrid energy generation/energy storage system

Treść / Zawartość
Abstrakt, słowa kluczowe
Dodatkowe informacje
Warianty tytułu
Języki publikacji
Wind, Solar photovoltaic and solar thermal power systems are emerging renewable energy technologies and can be developed as viable options for electricity generation in future. In this paper, autonomous hybrid generation systems consisting of wind turbine generators (WTGs), solar thermal power system (STPS), solar photovoltaic (PV), diesel engine generators (DEGs), fuel cells (FCs), battery energy storage system (BESS), flywheel (FW), ultra capacitors (UCs) and aqua electrolyzer (AE) have been considered for simulation studies. The power system frequency deviates for sudden changes in load or generation or the both. The comparative performance of the controllers installed to alleviate this frequency deviation for different hybrid systems, is carried out using time domain simulation. In practice, controllers (PI or PID) are tuned manually which is difficult and time consuming. The computational intelligence has opened paths to a new generation of advanced process control. Here, GA is used for optimization of controllers’ gains of the proposed hybrid systems. The simulation results demonstrate the effectiveness of the GA based controllers in terms of reduced settling time, overshoot and oscillations. The results are compared with conventional controllers.
Opis fizyczny
  • 1. Hajizadeh, Amin& Aliakbar Golkar, Masoud, "Control of hybrid fuel cell/energy storage distributed generation system against voltage sag", Int J Electr Power Energy Syst, vol. 32, 5, 2010, p.488-497
  • 2. Kurohane, K.& Senjyu, T.& Toshihisa Yona, A.& Urasaki, N.& Goya, T.& Funabashi, T., "A hybrid smart AC/DC power system", IEEE Trans Smart Grid, vol. 1, 2, 2010, p.199-204
  • 3. Senjyu, T.& Nakaji, T.& Uezato, K.& Funabashi, T., "A hybrid power system using alternative energy facilities in isolated islands", IEEE Trans Energy Convers, vol. 20, 2, 2005, p.406-414
  • 4. Kumar, B.S.& Mishra, S.& Senroy, N., "Agc for distributed generation", Proc Int Conf Sustain Energy Technol, 2008, p.89-94
  • 5. Cetin, Elmas& Tuncay, Yigit, "Genetic Algorithm based on-line tuning of a PI controller for a switched reluctance motor drive", Electr Power Comp Syst, vol. 35, 6, 2007, p.675-691
  • 6. Fleming, P.J.& Purshouse, R.C., "Evolutionary algorithms in control system engineering: a survey", Control Eng Pract, vol. 10, 2002, p.1223-1241
  • 7. Krohling, R.A.& Rey, J.P., "Design of optimal disturbance rejection PID controllers using genetic algorithms", IEEE Trans Evol Comput, vol. 5, 2001, p.78-82
  • 8. Karr, C.& Gentry, E., "Fuzzy control of ph using genetic algorithms", IEEE Trans Fuzzy Syst, vol. 1, 1, 1993, p.46-53
  • 9. Kim, Jin-Sung& Kim, Jin-Hwan& Park, Ji-Mo& Park, Sung-Man& Choe, Won-Yong& Heo, Hoon, "Auto tuning PID controller based on improved genetic algorithm for reverse osmosis plant", Int J Intell Syst Technol, vol. 3, 4, 2008
  • 10. Lee, Dong-Jing& Wang, Li, "Small-signal stability analysis of an autonomous hybrid renewable energy power generation/ energy storage system – Part I: time-domain simulations", IEEE Trans Energy Convers, vol. 23, 1, 2008, p.311-320
  • 11. Matsubara M, Fujita G, Shinji T, Sekine T, Akisawa A, Kashiwagi T, et al. Supply and demand control of dispersed type power sources in micro grid. In: Proc. 13th Int. Conf. ISAP’05. p. 67–72.
  • 12. Letcher, TrevorM, Future Energy: Improved, Sustainable and clean options for our planet, 2009
  • 13. Liu DY, Wang J, Feng XQ, Guo S, Xu C. Investigation and analysis on the combined operation of solar thermal power and conventional thermal power. In: IEEE international conference on sustainable power generation and supply, SUPERGEN ’09; 2009. p. 1–6.
  • 14. Tai Lü, Nan Li, Zhen Zhang, Qi-chun Zhu. Study on the continuous and stable running mode of solar thermal power plant, sustainable power generation and supply, 2009. SUPERGEN ‘09. International conference; April 2009. p. 1–4.
  • 15.
  • 16. Todd Woody. In: California’s Mojave desert, solar-thermal projects take off. Yale Environment 360; 27 October 2010.
  • 17. Ucilia Wang. The rise of concentrating solar thermal power, renewable energy world; 6 June 2011.
  • 18. Blaabjerg, F.& Chen, Z.& Kjaer, S.B., "Power electronics as efficient interface in dispersed power generation systems", IEEE Trans Power Electron, vol. 19, 5, 2004
  • 19. Wang, C.& Nehrir, M.H., "Power management of a stand-alone wind/photovoltaic/fuel cell energy system", IEEE Trans Energy Convers, vol. 23, 3, 2008, p.957-967
  • 20. Kim, S.-K.& Jeon, J.H.& Cho, C.H.& Ahn, J.-B.& Kwon, S.H., "Dynamic modeling and control of a grid-connected hybrid generation system with versatile power transfer", IEEE Trans Ind Electron, vol. 55, 4, 2008, p.677-1688
  • 21. Sedaghat, B.& Jalilvand, A.& Noroozian, R., "Design of a multilevel control strategy for integration of stand-alone wind/diesel system", Int J Electr Power Energy Syst, vol. 35, 1, 2012, p.123-137
  • 22. Danesh Shakib A, Balzer G. Optimization of battery application for wind energy storage. International conference on renewable energies and powet quality, Granada, Spain; 23th to 25th March, 2010.
  • 23. Sebastian, R., "Modelling and simulation of a high penetration wind diesel system with battery energy storage", Int J Electr Power Energy Syst, vol. 33, 3, 2011, p.767-774
  • 24. Gao, L.& Dougal, R.A.& Liu, S., "Power enhancement of an actively controlled battery/ultracapacitor hybrid", IEEE Trans Power Electron, vol. 20, 1, 2005, p.236-243
  • 25. Rajakaruna RMAS. Small-signal transfer functions of the classical boost converter supplied by ultracapacitor banks. Second IEEE conference on industrial electronics and applications; 2007. p. 692–7.
  • 26. Veszprémi K, Schmidt I. Flywheel energy storage drive for wind turbines. In: Proc. 7th international conference on power electronics and drive systems, PEDS’2007, Bangkok; November 2007. p. 916–23. ISBN:1-4244-0645-5.
  • 27. Akagi, H.& Sato, H., "Control and performance of a doubly-fed induction machine intended for a flywheel energy storage system", IEEE Trans Power Electron, vol. 7, 1, 2002
  • 28. Subkhan, M.& Komori, M., "New concept for flywheel energy storage system using SMB and PMB", IEEE Trans Appl Superconduct, vol. 21, 3, 2011, p.1485-1488
  • 29. Samieni, S.& Johnson, B.K.& Hess, H.L.& law, J.D., "Modeling and analysis of a flywheel energy storage system for voltage sag correction", IEEE Trans Ind Appl, vol. 42, 1, 2006, p.42-52
  • 30. Shivakumar, R.& Lakshmipathi, R., "Implementation of an innovative bio inspired GA and PSO algorithm for controller design considering steam GT dynamics", IJCSI Int J Comput Sci Issues, vol. 7, 1, 2010, p.18-28, No. 3
  • 31. Fogel, D.B., "Evolutionary computation toward a new philosophy of machine intelligence", 1995
  • 32. Eberhart RC, Shi Y. Comparison between genetic algorithms and particle swarm optimization. In: Proc IEEE Int Conf Evol Comput, Anchorage, AK; 1998. p. 611–6.
  • 33. Gaing, Z.-L., "A particle swarm optimization approach for optimum design of PID controller in AVR system", IEEE Trans Energy Convers, vol. 19, 2004, p.384-391
  • 34. Kaldellis, J.K.& Zafirakisa, D.& Kondili, E., "Optimum sizing of photovoltaic-energy storage systems for autonomous small islands", Int J Electr Power Energy Syst, vol. 32, 1, 2010, p.24-36
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.