Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 61 | 2 | 771-791
Tytuł artykułu

Thermal issues in machine tools

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents a review of the latest research activities and gives an overview of the state of the art in understanding changes in machine tool performance due to changes in thermal conditions (thermal errors of machine tools). The topics are focused on metal cutting machine tools, especially on turning and milling machines as well as machining centres. The topics of the paper thermal issues in machine tools include measurement of temperatures and displacements, especially displacements at the tool centre point, computations of thermal errors of machine tools, and reduction of thermal errors. Computing the thermal errors of machine tools include both, temperature distribution and displacements. Shortly addressed is also to avoid thermal errors with temperature control, the influence of fluids and a short link to energy efficiency of machine tools. The paper presents the summary of research work in the past and current. Research challenges in order to achieve a thermal stable machine tool are discussed. The paper apprehend itself as an update and not a substitution of two published keynote papers of Bryan et al. [28] in 1990 and Weck et al. [199] in 1995.
Słowa kluczowe
Rocznik
Tom
61
Numer
2
Strony
771-791
Opis fizyczny
Twórcy
autor
  • Management Center Innsbruck (MCI), Innsbruck, Austria
  • Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
  • Wroclaw University of Technology, Wroclaw, Poland
  • Institute for Machine Tools and Factory Management (IWF), TU Berlin, Germany
  • National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA
  • Physikalisch Technische Bundesanstalt (PTB), Braunschweig, Germany
autor
  • Physikalisch Technische Bundesanstalt (PTB), Braunschweig, Germany
  • Setsuan University, Osaka, Japan
autor
  • Precision Engineering Centre, Cranfield, UK
  • Laboratory for Machine Tools and Production Engineering (WZL), Aachen, Germany
  • Laboratory for Machine Tools and Production Engineering (WZL), Aachen, Germany
autor
  • Verband Deutscher Maschinen- und Anlagenbau e.V. (VDMA), Frankfurt, Germany
  • Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
Bibliografia
  • 1. Abele, E. et al., "Machine Tool Spindle Units", CIRP Annals – Manufacturing Technology, vol. 59/2, 2010, p.781-802
  • 2. Archenti, A., 2011, A Computational Framework for Control of Machining systems Capability – From Formulation to Implementation, PhD Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, ISBN 978-91-7501-162-2.
  • 3. Bayer-Helms, F. et al., "Längenstabilität bei Raumtemperatur von Proben der Glaskeramik Zerodur", Metrologia, vol. 21, 2, 1985, p.49-57
  • 4. Blazejewski, A. et al., "Modelling Thermal Deformation of Tilting Rotary Table with Direct Drive System", Journal of Machine Engineering, vol. 10, 4, 2010, p.18-32, ISSN 1895-7595
  • 5. Bonse, R., 1998, Thermisches Last-Verformungsverhalten von Werkzeugmaschinen, Diss. RWTH Aachen. ISBN 3-8265-6102-3.
  • 6. Bonse, R.& Weck, M., "Indirekte Kompensation Thermo-elastischer Verlagerungen bei Einwirkung mehrerer Wärmequellen", 1994
  • 7. Bosch, J.& Bryan, J., "Chapter 8, Temperature Fundamentals", Coordinate Measuring Machines and Systems, 1995
  • 8. Bossmanns, B. et al., "A Thermal Model for High Speed Motorized Spindles", International Journal of Machine Tools and Manufacture, vol. 93, 1999, p.1345-1366
  • 9. Brecher, C. et al., "Messtechnische Untersuchung des thermoelastischen Verlagerungsverhaltens von Werkzeugmaschinen, 11", Dresdner WZM-Fachseminar, 2006
  • 10. Brecher, C. et al., "Interaction of Manufacturing Process and Machine Tool", Annals of the CIRP, vol. 58, 2, 2009, p.588-607
  • 11. Brecher, C. et al., "Modelling of Thermal Behaviour of a Milling Machine Due to Spindle Load", 12th CIRP Conference on Modelling of Machining Operations, vol. 2, 2009, p.673-678, ISBN 978-84-608-0866-4
  • 12. Brecher, C. et al., "Optimierung des thermischen Verhaltens von Fräsmaschinen", Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 104, 2009, p.437-444
  • 13. Brecher, C. et al., "Compensation of Thermo-depend Machine Tool Deformations Due to Spindle Load Based on Reduced Experimental Procedure and Modelling Effort – Synthesis Between Direct and Indirect Compensation", Eighth International Conference on High Speed Machining, 2010, pp. S.89–S.95
  • 14. Brecher, C. et al., "Compensation of Thermo-Dependent Machine Tool Deformations Due to Spindle Load Based on Reduced Modeling Effort", 14th International Conference on Mechatronics Technology (ICMT 2010), Icho-kaikan, 2010, p.S.295-S.302
  • 15. Brecher, C. et al., "Thermisch bedingtes Verformungsverhalten von Fräsmaschinen", VDI-Z, vol. 152, 9, 2010, p.78-81
  • 16. Brecher, C., et al, (2009) Stressing Unit for Modelling of Thermal Behaviour of a Milling Machine, 12th CIRP Conference on Modelling of Machining Operations, vol. 2, 727–730. ISBN 978-84-608-0866-4.
  • 17. Brecher, C.& Hirsch, P., "Compensation of Thermo-elastic Machine Tool Deformation Based on Control internal Data", Annals of the CIRP, vol. 53, 1, 2004, p.299-304
  • 18. Brecher, C.& Hirsch, P., "Kompensation thermoelastischer Verlagerungen, 11", Dresdner Werkzeugmaschinen-Fachseminar, 2006
  • 19. Brecher, C.& Wissmann, A., "Messtechnische Untersuchung des thermoelastischen Verlagerungsverhaltens von Werkzeugmaschinen, 11", Dresdner Werkzeugmaschinen-Fachseminar, 2006
  • 20. Brecher, C.& Witt, S., "Static, Dynamic and Thermal Behaviour of Machine Tools with Regard to HPC", High-Performance Cutting, 2004, p.227-242
  • 21. Bryan, J., "International Status of Thermal Error Research", Annals of the CIRP, vol. 16, 2, 1969, p.203-215
  • 22. Bryan, J. et al., "Thermal Effects in Dimensional Metrology", 1965
  • 23. Bryan, J. et al., "Expansion of a Cutting Tool During Chip Removal", Annals of the CIRP, vol. 16, 1, 1967, p.49-52
  • 24. Bryan, J. et al., "A Practical Solution to the Thermal Stability Problem in Machine Tools", 1978
  • 25. Bryan, J., et al., 1982, An Order of Magnitude Improvement in Thermal Stability with the Use of Liquid Shower on a General Purpose Measuring Machine, SME Precision Machining Workshop, UCRL-87591.
  • 26. Bryan, J. et al., "Shower and High-Pressure Oil Temperature Control", Annals of the CIRP, vol. 35, 1, 1986, p.359-364
  • 27. Bryan, J. et al., "International Status of Thermal Error Research", Annals of the CIRP, vol. 39, 2, 1990, p.645-656
  • 28. Buchman, K.& Jungnickel, G., Die Wärmeubertragung an Be-und Verarbeitungmaschinen, PWR, vol. vol. 20, 1978, p. 279
  • 29. Carlisle, K., 1996, Design, Build and Development of an Ultra Precision Machining Facility, MSC Thesis, Cranfield.
  • 30. Chang, C.W. et al., "Dynamic Model Based ion Genetic Algorithms of Prediction for the Thermal Deformation of Machine Tools", Materials Science Forum, vol. 505–507, 2005, p.163-168
  • 31. Chapman, M., "Limitations of Laser Diagonal Measurements", Precision Engineering, vol. 27, 4, 2003, p.401-406
  • 32. Chen, J.S., "Neural Network-based Modelling and Error Compensation of Thermally-induced Spindle Errors", International Journal of Advanced Manufacturing Technology, vol. 12, 1996, p.303-308
  • 33. Chen, J.S. et al., "Quick Testing and Modelling of Thermally-induced Errors on CNC Machine Tools", International Journal of Machine Tools and Manufacture, vol. 35, 7, 1995, p.1063-1074
  • 34. Chen, J.S. et al., "Characterization and Models for Thermal Growth of a Motorized High Speed Spindle", International Journal of Machine Tools and Manufacture, vol. 43, 2003, p.1163-1170
  • 35. Chen, T.Y. et al., "Optimum Design of Headstocks of Precision Lathes", International Journal of Machine Tools and Manufacture, vol. 39, 1999, p.1961-1977
  • 36. Chou, C., "Liquid Temperature Control for Precision Tools", Annals of the CIRP, vol. 39, 1, 1990, p.535-543
  • 37. Ciddor, P.E., "Refractive Index of Air – New Equations for the Visible and Near Infrared", Applied Optics LP, vol. 35, 9, 1996, p.1566-1572
  • 38. DeBra, D.B. et al., "Shower and High Pressure Oil Temperature Control", CIRP Annals, vol. 35, 1, 1986, p.359-363
  • 39. Dehaes, J., 1998, Studie over de Thermische Beinvloeding van de Bewerkingsnauwkeurigheit van een Freesmachine, Diss. K.U. Leuven.
  • 40. Delbressine, F.M.L. et al., "Modelling Thermo-mechanical Behaviour of Multi Axis Machine Tools", Precision Engineering, vol. 30, 1, 2006, p.47-53
  • 41. Denkena, B. et al., "Kompensation thermischer Verlagerungen", Werkstatttechnik Online, vol. 97, 11–12, 2007, p.913-917
  • 42. Denkena, B. et al., "Sensitivitätsanalyse für ein Simulationsmodell", Werkstatttechnik Online, vol. 99, 5, 2009, p.294-299
  • 43. Dobrinski, P. et al., "Physik für Ingenieure", 2006
  • 44. Donmez, M.A. et al., "A General Methodology for Machine Tool Accuracy Enhancement by Error Compensation", Precision Engineering, vol. 8, 4, 1986, p.187-196
  • 45. Donmez, M.A. et al., "A Novel Cooling System to Reduce Thermally-Induced Errors of Machine Tools", Annals of the CIRP, vol. 56, 1, 2007, p.21-524
  • 46. Dornfeld, D. et al., "Precision Manufacturing", 2009
  • 47. Ess, M. et al., "Thermal Displacements of Rotary Axes", Annual Meeting MTTRF, 2011
  • 48. Eversheim, W. et al., "100 Jahre Produktionstechnik: Werkzeugmaschinenlabor WZL der RWTH Aachen von 1906 bis 2006", 2006
  • 49. Florussen, G.H.J. et al., "Assessing Thermally Induced Errors of Machine Tools by 3D Length Measurements", Annals of the CIRP, vol. 52, 1, 2003, p.333-336
  • 50. Franke, M. et al., "Measuring Large 3D Structures Using a Portable 4-arm Laser Interferometer", Advances in Metrology, 2010, p.35-42
  • 51. Fraser, S. et al., "Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 1: Concept of Generalized Modelling", Journal of Manufacturing Science and Engineering, vol. 120, 1998, p.623-631
  • 52. Fraser, S. et al., "Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 2: Generalized Transfer Functions", Journal of Manufacturing Science and Engineering, vol. 120, 1998, p.632-639
  • 53. Fraser, S. et al., "Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 3: Real-Time Estimation of Heat Sources", Journal of Manufacturing Science and Engineering, vol. 121, 1999, p.501-508
  • 54. Fraser, S. et al., "Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 4: A Multi-Variable Closed-Loop Control System", Journal of Manufacturing Science and Engineering, vol. 121, 1999, p.509-516
  • 55. Fraser, S. et al., "Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 5: Experimental Verification", Journal of Manufacturing Science and Engineering, vol. 121, 1999, p.517-523
  • 56. Gibson, A.O. et al., "A linear Observer Based Approach for Estimation Spindle Bearing Loads", Proceedings of the ASME Dynamic Systems and Control Division, 1996, p.251-258
  • 57. Gim, T. et al., "Ball Screw as Thermal Error Compensator", Proceedings form ASPE Annual Meeting, 2001
  • 58. Gleich, S., "Approach for Simulating Ball Bearing Screws in Thermal Finite Element Simulation", Journal of Machine Engineering, vol. 7, 1, 2007, p.101-107
  • 59. Gontarz, A. et al., "Energy Consumption Measurement with a Multichannel Measurement System on a Machine Tool", Intech, 2010, p.1-6
  • 60. Grossmann, G. et al., "Thermisches Verhalten veränderlicher Strukturen", Konstruktion, vol. 50, 6, 1998, p.27-31
  • 61. Grossmann, K.& Jungnickel, G., "Genauigkeitssteigerung an Werkzeugmaschinen", Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 94, 6, 1999, p.320-323
  • 62. Grossmann, K.& Jungnickel, G., "Instationäres thermoelastisches Verhalten von Vorschubachsen mit bewegtem Wälzkontakt", 2003
  • 63. Grossmann, K.& Jungnickel, G., "Prozessgerechte Bewertung des thermischen Verhalten von Werkzeugmaschinen", 2006
  • 64. Grossmann, K.& Jungnickel, G., "Thermisch Modellierung von Prozesseinflüssen an spannenden Werkzeugmaschinen", 2008
  • 65. Hahn, M.H., et al., 2006, Evaluation of an Inexpensive Method to Stabilize the Temperature of Machine Tool Components, National Institute of Standards and Technology Internal Report, NISTIR 7292.
  • 66. Heisel, U. et al., "Wärmeübertragungsbedingungen an Werkzeugmaschinenwänden", Dima, vol. 4, 2003, p.24-27
  • 67. Heisel, U. et al., "Thermography-Based Investigation into Thermally Induced Positioning Errors of Feed Drives By Example of a Ball Screw", Annals of the CIRP, vol. 55, 1, 2006, p.423-426
  • 68. Heisel, U. et al., "Modelling of Interaction Processes in Cutting", Proceedings of 2nd International Conference on Process Machine Interactions, 2010
  • 69. Henneke, K.D., "Thermisch geeicht-präziser gefertigt", Technica, vol. 7, 2007, p.38-39
  • 70. Herbst, U., "Kompensation thermoelastischer Verlagerungen an Werkzeugmaschinen", Schleiftechnisches Kolloquium, 2000, p.135-145
  • 71. Herbst, U., 2002, Analyse und Kompensation thermoelastischer Verlagerungen, Diss. RWTH Aachen.
  • 72. Hoffmann, E., "Konvektiver Wärmeübergang an Werkzeugmaschinen-Bauteilen", Industrie-Anzeiger, vol. 9, 1988, p.30-31
  • 73. Holkup, T. et al., "Thermo-mechanical Model of Spindles", CIRP Annals – Manufacturing Technology, vol. 59, 1, 2010, p.265-268
  • 74. Horejs, O. et al., Determination of Positioning Error of Feed Axes Due to Thermal Expansion by Infrared Thermography, ATEM’07, JSME-MMD, September, 12–14, 2007
  • 75. Horejš, O. et al., "A Compensation Technique of Machine Tool Thermal Errors Built on Thermal Transfer Functions", Proceedings of 5th International Conference on Leading Edge Manufacturing in 21st Cent, Osaka, Japan, 2009, p.197-202
  • 76. Horejš, O. et al., "Compensation of Machine Tool Thermal Errors Based on Transfer Functions", Modern Machinery (MM) Science Journal, 2010, p.162-165
  • 77. Hornych, J. et al., "Issues in Identification of Thermal Transfer Functions of Machine Tools", Proceedings of 9th EUSPEN, 2009, p.451-454
  • 78. Hornych, J. et al., "Thermomechanical Transfer Functions and Control of a Machine Tool Cooling System", Modern Machinery (MM) Science Journal, 2009, p.96-97
  • 79. Hou, D. et al., "A Novel FEA Model for the Integral Analysis of a Machine Tools and Machining Processes", Key Engineering Materials, vol. 257–258, 2004, p.45-50
  • 80. Huang, Y. et al., "Optimisation of Fixture Design with Consideration of Thermal De-formation in Face Milling", Transactions of NAMSRI/SME, vol. 27, 1999, p.322-340
  • 81. ISO 1, "Geometrische Produktspezifikation (GPS) – Referenztemperatur für die Geometrische Produktspezifikation und-prüfung", 2002
  • 82. ISO 10791-10, 2007, Test Conditions for Machining Centres – Part 10: Evaluation of Thermal Distortion, Genf, Schwitzerland.
  • 83. ISO 13041-8, 2004, Test Conditions for Numerically Controlled Turning Machines and Turning Centres – Part 8: Evaluation of Thermal Distortions, Genf, Schwitzerland.
  • 84. ISO 230-3, 2007, Test Code for Machine Tools – Part 3: Determination of Thermal Effects, Genf, Schwitzerland.
  • 85. Itho, S. et al., "Behavior of Interface Pressure Distribution in a Single Bolt-Flange Assembly Subjekt to Heat Flux", Journal of Engineering for Industry, vol. 114, 1992, p.231-236
  • 86. Ito, Y., "Thermal Deformation in Machine Tools", 2010
  • 87. Jedrzejewski, J., "Kompensation thermischer Verlagerungen einer Drehmaschine", Werkstatt und Betrieb, vol. 118, 1985, p.85-87
  • 88. Jedrzejewski, J., "Effect of the Thermal Contact Resistance on Thermal Behaviour of the Spindle Radial Bearings", International Journal of Machine Tools and Manufacture, vol. 28, 4, 1988, p.409-416
  • 89. Jedrzejewski, J. et al., Zur Erwärmung von Drehmaschinen-Spindelkästen, vol. vol. 4, 1973, pp. 47–50
  • 90. Jedrzejewski, J. et al., "Wärmeübergangsverhältnisse an Spindelkästen von Drehmaschinen", Industrieanzeiger, vol. 99, 74, 1977, p.1436-1439
  • 91. Jedrzejewski, J. et al., "Description of the Forced Convection along the Walls of Machine-tool Structures", Annals of the CIRP, vol. 37, 1, 1988, p.397-400
  • 92. Jedrzejewski, J. et al., "Beurteilung der Berechnungsmethode für die Bestimmung der Energieverluste in Wälzlagern", Schmierungstechnik, vol. 20, 1989, p.243-244
  • 93. Jedrzejewski, J. et al., "Numerical Optimization of Thermal Behaviour of Machine Tools", Annals of the CIRP, vol. 39, 1, 1990, p.379-382
  • 94. Jedrzejewski, J. et al., "Numerical Modelling of the Thermal Behaviour of Spindle Bearing Assemblies for Precise Machine tools", Proceedings of the CIRP Conference on PE&MS, 1991, pp. 525–536
  • 95. Jedrzejewski, J. et al., "A new Approach to Modelling Thermal Behaviour of a Machine Tool under Service Conditions", Annals of the CIRP, vol. 41, 1, 1992, p.455-458
  • 96. Jedrzejewski, J. et al., "Thermal Displacements Compensation of Manufacturing Cells Using a Universal Correcting Temperature Function", Proceedings of CSME Forum, 1992, p.675-680
  • 97. Jedrzejewski, J. et al., "Directions in Improving Thermal Behaviour of Spindle Bearing Assemblies in FMS Moduls", Manufacturing Systems, vol. 23, 4, 1994, p.317-322
  • 98. Jedrzejewski, J. et al., "Artificial Intelligence Tools in Diagnostics of Machine Tool Drives", Annals of the CIRP, vol. 45, 1, 1996, p.411-414
  • 99. Jedrzejewski, J. et al., "Thermisches Verhalten von Werkzeugmaschinen-Gestellen", Industrie Anzeiger, vol. 99, 65, 1996, p.1243-1245
  • 100. Jedrzejewski, J. et al., "An Approach to Integrating Intelligent Diagnostics and Supervision of Machine Tools", Journal of Intelligent Manufacturing, vol. 9, 1998, p.295-302
  • 101. Jedrzejewski, J. et al., "Hybrid Model of High Speed Machining Centre Headstock", CIRP Annals – Manufacturing Technology, vol. 53, 1, 2004, p.285-288
  • 102. Jedrzejewski, J. et al., "High-speed Precise Machine Tools Spindle Units Improving", Journal of Materials Processing Technology, vol. 162–163, 2005, p.615-621
  • 103. Jedrzejewski, J. et al., "Numerical Analyses and Compensation of HSC Machine Tools Thermal Displacements", pp. 268–275, Proceedings Lamdamap, vol. 7, 2005
  • 104. Jedrzejewski, J. et al., "Precise Modelling of HSC Machine Tool Thermal Behaviour", Journal of Achievements in Materials and Manufacturing Engineering, vol. 24, 1, 2007, p.245-252
  • 105. Jedrzejewski, J. et al., "Operational Behaviour of High Speed Spindle Unit", Modern Machinery (MM) Science Journal, vol. 10, 2008, p.40-43, ISSN 1803-1269 or 1085-0476
  • 106. Jedrzejewski, J. et al., "Precise Model of HSC Machining Centre for Aerospace Parts Milling", Journal of Mechanical Engineering, vol. 8, 3, 2008, p.29-41
  • 107. Jedrzejewski, J.& Kwasny, W., "Modelling of Angular Contact Ball Bearings and Axial Displacements for High-speed Spindles", CIRP Annals – Manufacturing Technology, vol. 59, 1, 2010, p.377-382
  • 108. Jedrzejewski, J.& Kwasny, W., "Study on Reducing Energy Consumption in Manufacturing Systems", Journal of Machine Engineering, vol. 11, 3, 2011, p.7-20
  • 109. Jin, C. et al., "Wavelet Neural Network Based on NARMAL2 Model for Prediction of Thermal Characteristics in a Feed System", Chinese Journal of Mechanical Engineering, vol. 23, 2010
  • 110. Jorgensen, B.R. et al., "Dynamic of Machine Tool Spindle/Bearing System Under Thermal Growth", Proceedings of the ASME Dynamic Systems and Control Division, 1996, p.333-340
  • 111. Jungnickel, G., "Simulation des thermischen Verhaltens von Werkzeugmaschinen", 2000
  • 112. Jungnickel, G., "Thermische Simulation von Werkzeugmaschinen", 2000
  • 113. Jungnickel, G., "Modellgestützte Kompensation von thermisch bedingten Verlagerungen in Echtzeitfähigkeit", AG Struktur und Prozessanalyse, 2006, p.147-149
  • 114. Jungnickel, G., "Prozessgerechte Bewertung des thermischen Verhaltens von Werkzeugmaschinen", AG Struktur und Prozessanalyse, 2006, p.138-140
  • 115. Kang, Y. et al., "Modification of a Neural Network Utilizing Hybrid Filters for the Compensation of Thermal Deformation in Machine Tools", International Journal of Machine Tools and Manufacture, vol. 47, 2007, p.376-387
  • 116. Kim, J.J. et al., "Thermal Behaviour of a Machine Tool Equipped with Linear Motors", International Journal of Machine Tools and Manufacture, vol. 44, 2004, p.749-758
  • 117. Kim, K.D. et al., "Real Time Compensatory Control of Thermal Errors for High Speed Machine Tools", Proceedings of Instn. Mech. Enrs, 218, Part B, Engineering Manufacture, 2004, p.913-924
  • 118. Kim, S.K. et al., "Real-time Estimation of Temperature Distribution in a Ball-screw System", International Journal of Machine Tools and Manufacture, vol. 37, 1997, p.451-464
  • 119. Kim, S.M. et al., "Prediction of Thermo-elastic Behaviour in a Spindle-bearing Surroundings", International Journal of Machine Tools and Manufacture, vol. 41, 2001, p.809-831
  • 120. Kim, S.M., "Effect of Bearing Surroundings on the High-Speed Spindle-Bearing Compliance", Advanced Manufacturing Technologies, vol. 19, 2002, p.551-557
  • 121. Kim, S.M. et al., "Spindle Housing Design Parameter Optimization Considering Thermo-Elastic Behaviour", International Journal of Advanced Manufacturing Technology, vol. 25, 2005, p.1061-1070
  • 122. Ko, T.J. et al., "Particular Behaviour of Spindle Thermal Deformation by Thermal Bending", International Journal of Machine Tools and Manufacture, vol. 43, 2003, p.17-23
  • 123. Kohút, P. et al., "The Influence of Convective Boundary Condition on Thermal-Deformation State of Machine Tool (in Czech)", Vysoké učení technické v Brně, 2010, p.21-27
  • 124. Konvica, J. et al., "Simulation, Experimental Investigation and Control of Thermal Behavior in Modular Tool Systems", 2004, pp. 265–285
  • 125. Koscsak, G., 2007, Ermittlung des instationären thermischen Verhaltens von Vorschubachsen mit Kugelgewindetrieb mit Hilfe der Verarbeitung thermographischer Messdaten, Diss. Universität Stuttgart. ISBN 978-3-00-0236372.
  • 126. Kruth, J.P. et al., "Compensation of Static and Transient Thermal Errors on CMMs", Annals of the CIRP, vol. 50, 1, 2001, p.377-380
  • 127. Lee, J.H. et al., "Development of Thermal Error Model with Minimum Number of Variables Using Fuzzy Logic Strategy", KSME International Journal, vol. 15, 11, 2001, p.1482-1489
  • 128. Lee, K.-J. et al., "Repeatability Analysis on the Tool Point Dynamics for Investigation on Uncertainty in Milling Stability", ASME Conference Proceedings IMECE2007, vol. 3, 2007, p.477-485, ISBN 0-7918-4297-5 or 978-0-7918-4297-3
  • 129. Li, H. et al., "Analysis of Bearing Configuration Effects on High Speed Spindles Using an Integrated Dynamic Thermo-mechanical Spindle Model", International Journal of Machine Tools and Manufacture, vol. 44, 2004, p.347-364
  • 130. Li, H. et al., "Integrated Dynamic Thermo-mechanical Modelling of High Speed Spindles Part1: Model Development", Journal of Manufacturing Science and Engineering, vol. 126, 2004, p.148-158
  • 131. Li, H. et al., "Integrated Dynamic Thermo-mechanical Modelling of High Speed Spindles Part 2: Solution Procedure and Validation", Journal of Manufacturing Science and Engineering, vol. 126, 2004, p.159-168
  • 132. Li, S. et al., "A study of Pre-compensation for Thermal Errors of NC ma-chine Tools", International Journal of Machine Tools and Manufacture, vol. 37, 1997, p.1715-1719
  • 133. Luttrel, D., "Tutorial on Fundamentals of Thermal Effects: Precision Design Principles, Measurement und Control of Temperatures", ASPE Annual Meeting, 2007
  • 134. Maisch, M., "Software korrigiert geometrische und thermische Fehler", Werkstatt und Betrieb, vol. 126, 11, 1993, p.691-694
  • 135. Mannan, M.A. et al., "Investigation into Temperature Dependence of Motor Current Measurements Applied to Monitoring and Adaptive Control", Annals of the CIRP, vol. 41, 1, 1992, p.451-454
  • 136. Mareš, M. et al., "Application of Mechatronic Approach to Modelling, Identification and Control of Machine Tool Thermal Errors", Proceedings of 29th IASTED International. Conf. Mod., 2010, ISBN 978-0-88986-833-5
  • 137. Mayr, J., 2010, Beurteilung und Kompensation des Temperaturgangs von Werkzeugmaschinen, Diss. ETH Zurich.
  • 138. Mayr, J. et al., "Comparing the Thermo-mechanical Behaviour of ma-chine Tool Frame Designs Using a FDM – FEM Simulation Approach", Proceedings ASPE Annual Meeting, 2007, p.17-20
  • 139. Mayr, J. et al., "Nützen thermische Messungen auf Werkzeugmaschinen?", MB-Revue, 2007, p.110-117
  • 140. Mayr, J. et al., "Simulation and Prediction of the Thermally Induced Deformations of Machine Tools Caused by Moving Linear Axis Using the FDEM Simulation Approach", Proceedings ASPE Annual Meeting, 2008
  • 141. Mayr, J. et al., "Calculating thermal location and component errors on machine tools", Proceedings ASPE Annual Meeting, 2009, ISBN 978-1-887706-55-1
  • 142. Mayr, J. et al., "Compensation of Thermal Effects on Machine Tools using a FDEM Simulation Approach", Proceedings Lamdamap, vol. 9, 2009, ISBN 1861941188
  • 143. Mayr, J. et al., "Comparing Different Cooling Concepts for Ball Screw Systems", Proceedings ASPE Annual Meeting, 2010, ISBN 978-1-887706-55-1
  • 144. Mayr, J. et al., "Thermal behaviour improvement of linear axis", Proceedings of 11th euspen International Conference, V1, 2011, p.291-294
  • 145. McClure, E.& Watts, R., "Thermal Expansion of the Workpiece During Turning", ASME Winter Meeting, 68-WA/PROD-24, 1968
  • 146. Mitsuishi, M. et al., "Development of an Intelligent High-Speed Machining Centre", Annals of the CIRP, vol. 50, 1, 2001, p.275-280
  • 147. Morantz, P. et al., "Precision grinding for rapid fabrication of segments for extremely large telescopes using the Cranfield BoX", Proceedings SPIE, vol. 7739, 2010, p.773905
  • 148. Mori, M. et al., "Design Optimization and Development of CNC Lathe Headstock to Minimize Thermal Deformation", Annals of the CIRP, vol. 58, 1, 2009, p.331-334
  • 149. Moriwaki, T., "Thermal Deformation and Its On-Line Compensation of Hydrostatically Supported Precision Spindles", Annals of the CIRP, vol. 37, 1, 1988, p.393-396
  • 150. Moriwaki, T., "Analysis of Thermal Deformation of an Ultraprecision Air Spindle System", Annals of the CIRP, vol. 47, 1, 1998, p.315-319
  • 151. Moriwaki, T. et al., "Estimation of Thermal Deformation of Machine Tool by Applying Neural Network", Transactions of JSME, C, vol. 61, 584, 1995, p.1691-1696
  • 152. Moriwaki, T. et al., "Prediction of Thermal Deformation of Machine Tool with Strain Sensor", Manufacturing Science and Technology, ASME, MED, vol. 6/1, 1997, p.137-142
  • 153. Moriwaki, T. et al., "Development of an Intelligent Turning Machine Equipped with Open-Architecture CNC Controller to Compensate Thermal Deformation of Machine Tool", Proc. CIRP Sponsored International Seminar on Improving Machine Tool Performance, San Sebastian, 1998, p.317-325
  • 154. Niemeier, W., "Ausgleichungsrechnung", 2008, 426 ff
  • 155. Neugebauer, R. et al., "Thermozelle zur Untersuchung des thermischen Verhaltens von Maschinen", Maschinenmarkt. MM, das Industriemagazin, vol. 104, 40, 1998, p.34-37
  • 156. Neugebauer, R. et al., "Optimization of Thermal Behavior of machine Tools with Separated Machine Bed Components", Production Engineering, vol. VIII, 1, 2001, p.137-140
  • 157. Neugebauer, R. et al., "A modelling approach to optimize the thermal behavior of machine tool components", Production Annals of the German Academy of Society for Production Engineering, vol. 9, 1, 2002, p.131-134
  • 158. Neugebauer, R. et al., "Mechatronic Systems for Machine Tools", Annals of the CIRP, vol. 56, 2, 2007, p.656-686
  • 159. Neugebauer, R. et al., "Improving the Precision by Thermal Simulation", ATZproduktion, vol. 03–04, 2, 2009, p.4-9
  • 160. Neugebauer, R. et al., "An extended Procedure for Convective Boundary Conditions on Transient Thermal Simulations of Machine Tools", Production Engineering. Research and Development, vol. 6, 2010, p.641-646
  • 161. Oliver, M.A.& Webster, R., "Kriging: A Method of Interpolation for Geographical Information Systems", International Journal of Geographical Information Science, vol. 4, 3, 1990, p.313-332
  • 162. Pierse, M., "A Simple Method for Thermal Error Correction of a Grinding Machine", Proceedings Lamdamap, vol. 8, 2007
  • 163. Popov, G., "Einfluss der Konvektion auf das thermische Verhalten von Werkzeugmaschinen", Industrie-Anzeiger, vol. 23, 1988, p.38-39
  • 164. Postlethwaite, S.R. et al., "Machine Tool Thermal Error Reduction – An Appraisal", Proceedings Institution of Mechanical Engineers, vol. 213, B, 1999, p.1-9
  • 165. Ramesh, R. et al., "Error Compensation in Machine Tools – A Review Part II: Thermal Errors", International Journal of Machine Tools and Manufacture, vol. 40, 2000, p.1257-1284
  • 166. Ramesh, R. et al., "Support Vector Machine Model for Classification of thermal Error in Machine Tools", International Journal of Advanced Manufacturing Technology, vol. 20, 2002, p.114-120
  • 167. Ramesh, R. et al., "Thermal Error Measurement and Modelling in Machine Tools Part I: Influence of Varying Operating Condition", International Journal of Machine Tools and Manufacture, vol. 43, 2003, p.405-419
  • 168. Ramesh, R. et al., "Thermal Error Measurement and Modelling in Machine Tools Part II: Hybrid Bayesian Network-support Vector Machine Model", International Journal of Machine Tools and Manufacture, vol. 43, 2003, p.405-419
  • 169. Saljè, E. et al., "Comparison of Machine Tool Elements Made of Polymer Concrete and Cast Iron", Annals of the CIRP, vol. 37, 1, 1988, p.381-384
  • 170. Schwenke, H. et al., "Error Mapping of CMMs and Machine Tools by a Single Tracking Interferometer", CIRP Annals, vol. 54, 1, 2005, p.475-478
  • 171. Schwenke, H. et al., "Geometric Error Measurement and Compensation of machines – An Update", Annals of the CIRP, vol. 57, 2, 2008, p.660-675
  • 172. Schwenke, H. et al., "On-the-fly Calibration of Linear and Rotary Axes of Machine Tools and CMMs Using a Tracking Interferometer", Annals of the CIRP, vol. 58/1, 2009, p.477-480
  • 173. Shore, P., 1995, Ultra Precision Machining Facility, PhD Thesis, Cranfield.
  • 174. Song, D. et al., "Real-time Measurement of Spindle Thermal Deformatio Using Interferometers", Optical Engineering, vol. 39, 8, 2000, p.2114-2118
  • 175. Song, H.B. et al., "Flow and Heat Transfer Characteristics of a Two-dimensional Oblique Wall Attaching Offset Jet", International Journal of Heat and Mass Transfer, vol. 43, 2000, p.2395-2404
  • 176. Spur, G. et al., "Thermal Behaviour Optimization of Machine Tools", Annals of the CIRP, vol. 37, 1, 1988, p.400-405
  • 177. Spur, G. et al., "Ausgleich von Axial- und Winkelverlagerungen an Drehmaschinen durch Beheizen", Industrie-Anzeiger, vol. 89, 2, 1989, p.32-33
  • 178. Spur, G. et al., "Konstruktionskatalog zur Optimierung des thermischen Verhaltens von Werkzeugmaschinen, Teil1: Aufbau des Katalog, Spindelbaugruppe", Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 87, 12, 1992, p.690-693
  • 179. Srinivasa, N. et al., "Spindle Thermal Drift Measurement Using the Laser Ball Bar", Precision Engineering, vol. 18, 1996, p.118-128
  • 180. Teeuwsen, J.W.M.C. et al., "A General Method for Error Description of CMMs Using Polynomial Fitting Procedures", Annals of the CIRP, vol. 38, 1, 1989, p.505-510
  • 181. Turek, P. et al., "Methods of Machine Tool Error Compensation", Journal of Machine Engineering, vol. 10, 4, 2010, p.5-26
  • 182. Uhlmann, E. et al., "Simulation of the Thermal Behavior of a Machine Tool Equipped with Linear Motors", Deutsch-Polnisches Seminar, 2010
  • 183. Uhlmann, E. et al., "Adaptronic Compensation of Thermal Strain at Machine Tool Spindles using CRP-Bandages", Proceedings of 2nd Manufacturing Engineering Society International Conference, 2007
  • 184. Uhlmann, E. et al., "Milling Machine Evolution in Area of Conflict between Efficiency", Accuracy and Social Ecology, 12th International Seminar on High Techn. UNIMEP, 2007
  • 185. Uhlmann, E. et al., "Compensation of Thermal Deformations at Machine Tools using Adaptronic CRP-Structures", Proceedings of 41st CIRP Conference on Manufacturing Systems: Manufacturing Systems and Techniques for the New Front, 2008, p.183-186
  • 186. Uhlmann, E. et al., "Application of CFRP Structures for Compensation of Thermal Strains at Machine Tools", CIRP Paris January Meet. STC M Pap. Sess, 2010
  • 187. Uhlmann, E., et al., 2010, Kompensation thermischer Verlagerungen an Werkzeugmaschinen durch Einsatz von CFK-Strukturen, Fortschr.-Ber. VDI, Reihe 2 – Fertigungstechnik, Nr. 675: Hybride Techn. in der Prod., VDI-Verlag, 65–77.
  • 188. Van den Bergh, C., 2001, Reducing Thermal Errors of CMM Located on the Shop-Floor, Diss. K.U. Leuven.
  • 189. Veldhuis, S.C.& Elbestawi, M.A., "A Strategy of Compensation of Errors in Five-Axis Machining", Annals of the CIRP, vol. 44, 1, 1995, p.373-377
  • 190. Walter, R., "Mit direkter Kühlung zu mehr Genauigkeit", Werkstatt und Betrieb, vol. 6, 2006, p.129-130
  • 191. Weck, M.& Brecher, C., "Werkzeugmaschinen Automatisierung von Maschinen und Anlagen", 2006
  • 192. Weck, M.& Brecher, C., "Werkzeugmaschinen Messtechnische Untersuchung und Beurteilung", 2006
  • 193. Weck, M. et al., "Compensation of Thermal Errors in Machine Tools with a Minimum Number of Temperature Probes Based on Neural Networks", Proceedings of the ASME DSC, vol. 64, 1998, p.423-430
  • 194. Weck, M. et al., "Kompensation thermoelastischer Strukturverformungen", Werkstatttechnik Online, vol. 92, 2002, p.327-332
  • 195. Weck, M. et al., "Reduction and Compensation of Thermal Errors in Machine Tools", Annals of the CIRP, vol. 44, 2, 1995, p.589-598
  • 196. Weidlich, D.& Nestmann, S., "Kompaktführungen an Mineralgussgestellen", Werkstatt und Betrieb, vol. 7–8, 2001, p.120-123
  • 197. Weikert, S.& Knapp, W., "R-Test, A New Device for Accuracy Measurements on Five Axis Machine Tools", Annals of the CIRP, vol. 53, 1, 2004, p.429-432
  • 198. Wendt, K. et al., "Inspection of Large CMMs by Sequential Multilateration Using a Single Laser Tracker, Laser Metrology and Machine Performance VI", 6th International Conference on Laser Metrology, Machine Tool, CMM and Robot Performance, 2003, p.121-130
  • 199. Wendt, K. et al., "Mobile Multi-lateration Measuring System for High Accurate and Traceable 3D Measurements of Large Objects", Proceedings of the 10th ISMQC, Paper No. 25, 2010, p.1-4
  • 200. Winiarski, Z. et al., "Decreasing of Thermal Errors in a Lathe by Forced Cooling of Ball Screws and Headstock", Journal of Machine Engineering, vol. 8, 4, 2008, p.122-130
  • 201. Wu, C.H. et al., "Thermal Analysis for the Feed Drive System of a CNC Machine Centre", International Journal of Machine Tools and Manufacture, vol. 43, 2003, p.1521-1528
  • 202. www.precitech.com, 10.03.2011, www.makino.com, 10.03.2011.
  • 203. Yang, H., "Dynamic Neural Network Modelling for Nonlinear, Nonstationary Machine Tool Thermally Induced Error", International Journal of Machine Tools and Manufacture, vol. 45, 2005, p.455-465
  • 204. Yang, H. et al., "Adaptive Model Estimation of Machine-tool Thermal Errors Based on Recursive Dynamic Modelling Strategy", International Journal of Machine Tools and Manufacture, vol. 45, 2005, p.1-11
  • 205. Yang, H.& Ni, J., "Adaptive Model Estimation of Machine-tool Thermal Errors Based on Recursive Dynamic Modelling Strategy", Machine Tools & Manufacture, vol. 45, 2005, p.1-11
  • 206. Yang, S.H. et al., "Measurement of Spindle Thermal Errors in Machine Tool Using Hemispherical Ball Bar Test", International Journal of Machine Tools and Manufacture, vol. 44, 2004, p.333-340
  • 207. Yun, W.S. et al., "Thermal Error Analysis for a CNC Lathe Feed Drive System", International Journal of Machine Tools and Manufacture, vol. 39, 1999, p.1088-1101
  • 208. Zhao, Y. et al., "Optimization and Temperature Mapping of An Ultra-High Thermal Stability Environmental Enclosure", Precision Engineering, vol. 34, 2010, p.164-170
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.elsevier-68977925-19b5-366a-9530-f717963e4f54
Identyfikatory
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.