Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 119 | Complete | 173-184
Tytuł artykułu

Kinetics and reusability of Zr/CaO as heterogeneous catalyst for the ethanolysis and methanolysis of Jatropha crucas oil

Treść / Zawartość
Abstrakt, słowa kluczowe
Dodatkowe informacje
Warianty tytułu
Języki publikacji
Zirconium impregnated (5–20wt.%) calcium oxide (Zr/CaO) was prepared by a simple wet chemical method followed by calcination up to 900°C. The prepared Zr/CaO was employed as a heterogeneous catalyst for the transesterification of Jatropha crucas oil with ethanol and methanol for the production of fatty acid ethyl and methyl esters, respectively. The catalysts were characterized by powder X-ray diffraction, Fourier transform-infrared spectroscopy, Brunauer–Emmett–Teller surface area measurement, scanning electron microscopy, transmission electron microscopy techniques and basic strength of the catalyst were established by acid–base titration. The catalytic activity was found to be a function of basic sites which in turn depend on calcination temperature and zirconium concentration. The catalyst with 15wt.% zirconium concentration and calcined at 700°C, showed the highest catalytic activity among the prepared catalysts. A pseudo first order kinetic equation was applied to evaluate the kinetic parameters of Zr/CaO catalyzed transesterification. The activation energy (Ea) for the Zr/CaO catalyzed methanolysis and ethanolysis was found to be 29.8kJmol−1 and 42.5kJmol−1, respectively. The Koras–Nowak test was performed to demonstrate that catalytic activity was independent from the mass transport phenomenon and follows the kinetic regime.
•Zirconium impregnated calcium oxide (Zr/CaO) has been prepared by wet chemical route•Ethanolysis and methanolysis of jatropha oil was catalyzed by Zr/CaO solid catalyst•Kinetics and reusability studies has been performed with the catalyst•Koras-Nowak test ruled out the transport phenomenon in catalytic activity
Fuel Processing Technology , ISSN 03783820
Opis fizyczny
  • 1. Ma, F.& Hanna, M.A., "Biodiesel production: a review", Bioresource Technology, vol. 70, 1999, p.1-15
  • 2. Kumar, D.& Ali, A., "Nanocrystalline K–CaO for the transesterification of a variety of feedstocks: structure, kinetics and catalytic properties", Biomass and Bioenergy, vol. 46, 2012, p.459-468
  • 3. Encinar, J.M.& Gonzalez, J.F.& Rodrıguez, J.J.& Tejedor, A., "Biodiesel fuels from vegetable oils: transesterification of Cynara cardunculus L. oils with ethanol", Energy & Fuels, vol. 16, 2002, p.443-450
  • 4. Kaur, N.& Ali, A., "Lithium ions-supported magnesium oxide as nano-sized solid catalyst for biodiesel preparation from mutton fat", Energy Source Part A, vol. 35, 2013, p.184-192
  • 5. Cao, F.& Chen, Y.& Zhai, F.& Li, J.& Wang, J.& Wang, X.& Wang, S.& Zhu, W., "Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid", Biotechnology and Bioengineering, vol. 101, 2008, p.93-100
  • 6. Zabeti, M.& Daud, W.M.A.W.& Aroua, M.K., "Activity of solid catalysts for biodiesel production: a review", Fuel Processing Technology, vol. 90, 2009, p.770-777
  • 7. Dehkordi, A.M.& Ghasemi, M., "Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts", Fuel Processing Technology, vol. 97, 2012, p.45-51
  • 8. Sree, R.& Babu, N.S.& Prasad, P.S.S.& Lingaiah, N., "Transesterification of edible and non-edible oils over basic solid Mg/Zr catalysts", Fuel Processing Technology, vol. 90, 2009, p.152-157
  • 9. Sun, H.& Ding, Y.& Duan, J.& Zhang, Q.& Wang, Z.& Lou, H.& Zheng, X., "Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst", Bioresource Technology, vol. 101, 2010, p.953-958
  • 10. Jitputti, J.& Kitiyanan, B.& Rangsunvigit, P.& Bunyakiat, K.& Attanatho, L.& Jenvanitpanjakul, P., "Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts", Chemical Engineering Journal, vol. 116, 2006, p.61-66
  • 11. Laosiripojana, N.& Kiatkittipong, W.& Sutthisripok, W.& Assabumrungrat, S., "Synthesis of methyl esters from relevant palm products in near-critical methanol with modified-zirconia catalysts", Bioresource Technology, vol. 101, 2010, p.8416-8423
  • 12. Faria, E.A.& Marques, J.S.& Dias, I.M.& Andrade, R.D.A.& Suareza, P.A.Z.& Prado, A.G.S., "Nanosized and reusable SiO2/ZrO2 catalyst for highly efficient biodiesel production by soybean transesterification", Journal of the Brazilian Chemical Society, vol. 20, 2009, p.1732-1737
  • 13. Furuta, S.& Matsuhashib, H.& Arata, K., "Biodiesel fuel production with solid amorphous-zirconia catalysis in fixed bed reactor", Biomass and Bioenergy, vol. 30, 2006, p.870-873
  • 14. Yee, K.F.& Wu, J.C.S.& Lee, K.T., "A green catalyst for biodiesel production from jatropha oil: optimization study", Biomass and Bioenergy, vol. 35, 2011, p.1739-1746
  • 15. Omar, W.N.N.W.& Amin, N.A.S., "Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst", Fuel Processing Technology, vol. 92, 2011, p.2397-2405
  • 16. Brunschwig, C.& Moussavou, W.& Blin, J., "Use of bioethanol for biodiesel production", Progress in Energy and Combustion Science, vol. 38, 2012, p.283-301
  • 17. Li, E.& Xu, Z.P.& Rudolph, V., "MgCoAl-LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel", Applied Catalysis B: Environmental, vol. 88, 2009, p.42-49
  • 18. Soldi, R.A.& Oliveira, A.R.S.& Ramos, L.P.& Oliveira, M.A.F.C., "Soybean oil and beef tallow alcoholysis by acid heterogeneous catalysis", Applied Catalysis A: General, vol. 361, 2009, p.42-48
  • 19. Song, R.& Tong, D.& Tang, J.& Hu, C., "Effect of composition on the structure and catalytic properties of KF/Mg-La solid base catalysts for biodiesel synthesis via transesterification of cottonseed oil", Energy & Fuels, vol. 25, 2011, p.2679-2686
  • 20. Birla, A.& Singh, B.& Upadhyay, S.N.& Sharma, Y.C., "Kinetics studies of synthesis of biodiesel from waste frying oil using a heterogeneous catalyst derived from snail shell", Bioresource Technology, vol. 106, 2012, p.95-100
  • 21. Lukic, I.& Kesic, Z.& Maksimovic, S.& Zdujic, M.& Liu, H.& Krstic, J.& Skala, D., "Kinetics of sunflower and used vegetable oil methanolysis catalyzed by CaO·ZnO", Fuel, vol. 113, 2013, p.367-378
  • 22. Singh, A.K.& Fernando, S.D., "Transesterification of soybean oil using heterogeneous catalysts", Energy & Fuels, vol. 22, 2008, p.2067-2069
  • 23. Singh, A.K.& Fernando, S.D., "Preparation and reaction kinetics studies of Na-based mixed metal oxide for transesterification", Energy & Fuels, vol. 23, 2009, p.5160-5164
  • 24. Lopez, M.V.& Stoeckli, F.& Castillaa, C.& Marin, F.C., "On the characterization of acidic and basic surface sites on carbons by various techniques", Carbon, vol. 37, 1999, p.1215-1221
  • 25. Vamvakaki, V.& Tsagaraki, K.& Chaniotakis, N., "Carbon nanofiber-based glucose biosensor", Analytical Chemistry, vol. 78, 2006, p.5538-5542
  • 26. Knothe, G., "Monitoring a progressing transesterification reaction by fiber-optic near infrared spectroscopy with correlation to 1H nuclear magnetic resonance spectroscopy", Journal of the American Oil Chemists' Society, vol. 77, 2000, p.489-493
  • 27. Ghesti, G.F.& Macedo, J.L.& Resck, I.S.& Dias, J.A.& Dias, S.C.L., "FT-Raman spectroscopy quantification of biodiesel in a progressive soybean oil transesterification reaction and its correlation with 1H-NMR spectroscopy methods", Energy & Fuels, vol. 21, 2007, p.2475-2480
  • 28. Balbino, J.M.& Menezes, E.W.D.& Benvenutti, E.V.& Cataluna, R.& Ebeling, G.& Dupont, J., "Silica supported guanidine catalyst for continuous flow biodiesel production", Green Chemistry, vol. 13, 2011, p.3111-3116
  • 29. Tariq, M.& Ali, S.& Ahmad, F.& Ahmad, M.& Zafar, M.& Khalid, N.& Khan, M.A., "Identification, FT-IR, NMR (1H and 13C) and GC/MS studies of fatty acid methyl esters in biodiesel from rocket seed oil", Fuel Processing Technology, vol. 92, 2011, p.336-341
  • 30. Guzatto, R.& Defferrari, D.& Reiznautt, Q.B.& Cadore, I.R.& Samios, D., "Transesterification double step process modification for ethyl ester biodiesel production from vegetable and waste oils", Fuel, vol. 92, 2012, p.197-203
  • 31. Sahu, H.R.& Rao, G.R., "Characterization of combustion synthesized zirconia powder by UV–vis, IR and other techniques", Bulletin of Materials Science, vol. 23, 2000, p.349-354
  • 32. Powers, D.A.& Gray, H.B., "Characterization of the thermal dehydration of zirconium oxide halide octahydrates", Inorganic Chemistry, vol. 12, 1973, p.2721-2726
  • 33. Patil, P.D.& Deng, S., "Transesterification of Camelina sativa oil using heterogeneous metal oxide catalysts", Energy & Fuels, vol. 23, 2009, p.4619-4624
  • 34. Sankaranarayanan, S.& Antonyraj, C.A.& Kannan, S., "Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts", Bioresource Technology, vol. 109, 2012, p.57-62
  • 35. Lopez, D.E.& Goodwin, J.G.& Bruce, D.A.& Lotero, E., "Transesterification of triacetin with methanol on solid acid and base catalysts", Applied Catalysis A: General, vol. 295, 2005, p.97-105
  • 36. Kouzu, M.& Hidaka, J., "Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review", Fuel, vol. 93, 2012, p.1-12
  • 37. Liu, X.& He, H.& Wang, Y.& Zhu, S.& Piao, X., "Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst", Fuel, vol. 87, 2008, p.216-221
  • 38. Yan, S.& Kim, M.& Mohan, S.& Salley, S.O.& Ng, K.Y.S., "Oil transesterification over calcium oxides modified with lanthanum", Applied Catalysis A: General, vol. 360, 2009, p.163-170
  • 39. Kim, H.J.& Kang, B.S.& Kim, M.J.& Park, Y.M.& Kim, D.K.& Lee, J.S.& Lee, K.Y., "Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst", Catalysis Today, vol. 93–95, 2004, p.315-320
  • 40. Wang, J.X.& Chen, K.T.& Huang, S.T.& Chen, C.C., "Application of Li2SiO3 as a heterogeneous catalyst in the production of biodiesel from soybean oil", Chinese Chemical Letters, vol. 22, 2011, p.1363-1366
  • 41. Xie, W.& Peng, H.& Chen, L., "Calcined Mg–Al hydrotalcites as solid base catalysts for methanolysis of soybean oil", Journal of Molecular Catalysis A: Chemical, vol. 246, 2006, p.24-32
  • 42. Leclercq, E.& Finiels, A.& Moreau, C., "Transesterification of rapeseed oil in the presence of basic zeolites and related solid catalysts", Journal of the American Oil Chemists' Society, vol. 78, 2001, p.1161-1165
  • 43. Furuta, S.& Matsuhashib, H.& Arata, K., "Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure", Catalysis Communications, vol. 5, 2004, p.721-723
  • 44. Serio, M.D.& Tesser, R.& Pengmei, L., "Heterogeneous catalysts for biodiesel production", Energy & Fuels, vol. 22, 2008, p.207-217
  • 45. Freedman, B.& Butterfield, R.& Pryde, E., "Transesterification kinetics of soybean oil", Journal of the American Oil Chemists' Society, vol. 63, 1986, p.1375-1380
  • 46. Singh, A.K.& Fernando, S.D., "Reaction kinetics of soybean oil transesterification using heterogeneous metal oxide catalysts", Chemical Engineering and Technology, vol. 30, 2007, p.1716-1720
  • 47. Darnoko, D.& Cheryan, D.M., "Kinetics of palm oil transesterification in a batch reactor", Journal of the American Oil Chemists' Society, vol. 77, 2000, p.1263-1267
  • 48. Noureddini, H.& Zhu, D., "Kinetics of transesterification of soybean oil", Journal of the American Oil Chemists' Society, vol. 74, 1997, p.1457-1463
  • 49. Vicente, G.& Martinez, M.& Aracil, J., "Kinetics of Brassica carinata oil methanolysis", Energy & Fuels, vol. 20, 2006, p.1722-1726
  • 50. Vicente, G.& Martinez, M.& Aracil, J.& Esteban, A., "Kinetics of sunflower oil methanolysis", Industrial and Engineering Chemistry Research, vol. 44, 2005, p.5447-5454
  • 51. Marjanovic, A.V.& Stamenkovic, O.S.& Todorovic, Z.B.& Lazic, M.L.& Veljkovic, V.B., "Kinetics of the base-catalyzed sunflower oil ethanolysis", Fuel, vol. 89, 2010, p.665-671
  • 52. Silva, N.L.& Batistella, C.B.& Filho, R.M.& Maciel, M.R.W., "Biodiesel production from castor oil: optimization of alkaline ethanolysis", Energy & Fuels, vol. 23, 2009, p.5636-5642
  • 53. Dang, T.H.& Chen, B.H.& Lee, D.J., "Application of kaolin-based catalysts in biodiesel production via transesterification of vegetable oils in excess methanol", Bioresource Technology, 2013
  • 54. Liu, X.& Piao, X.& Wang, Y.& Zhu, S., "Model study on transesterification of soybean oil to biodiesel with methanol using solid base catalyst", Journal of Physical Chemistry A, vol. 110, 2010, p.3750-3755
  • 55. Madon, R.J.& Boudart, M., "Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions", Industrial and Engineering Chemistry Fundamentals, vol. 21, 1982, p.438-447
  • 56. Gonzalez, C.A.& Correa, C.M.D., "Catalytic hydrodechlorination of tetrachloroethylene over Pd/TiO2 minimonoliths", Industrial and Engineering Chemistry Research, vol. 49, 2010, p.490-497
  • 57. Kumar, R.& Bansal, V.& Patel, M.B.& Sarpal, A.S., "1H nuclear magnetic resonance (NMR) determination of the iodine value in biodiesel produced from algal and vegetable oils", Energy & Fuels, vol. 26, 2012, p.7005-7008
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.