Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 445-446 | Complete | 371-376
Tytuł artykułu

Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta

Treść / Zawartość
Abstrakt, słowa kluczowe
Dodatkowe informacje
Warianty tytułu
Języki publikacji
Dose response curve and population growth rate alterations of marine Chlorophyte Dunaliella tertiolecta derived from the exposure to ZnO nanoparticles were evaluated. Bulk ZnO and ionic zinc were also investigated for comparison. At the same time, the aggregation state and particle size distribution were monitored. The evaluated 50% effect concentration (EC50 1.94 [0.78–2.31]mgZnL−1) indicates that nano ZnO is more toxic than its bulk counterpart (EC50 3.57 [2.77–4.80]mgZnL−1). Cross-referencing the toxicity parameters calculated for ZnCl2 (EC50 0.65 [0.36–0.70]mgZnL−1) and the dissolution properties of the ZnO, it can be gathered that the higher toxicity of nano ZnO is most likely related to the peculiar physicochemical properties of the nanostate with respect to the bulk material. Furthermore growth rate of D. tertiolecta was significantly affected by nano ZnO exposure.Our findings suggest that the primary particle size of the dispersed particles affect the overall toxicity.
Opis fizyczny
  • Enea CR Portici, P. le E. Fermi, 1, 80055 - Portici, Naples, Italy
  • Enea CR Portici, P. le E. Fermi, 1, 80055 - Portici, Naples, Italy
  • Università degli studi di Napoli “Federico II”, Parco Gussone 1, 80055 - Portici, Naples, Italy
  • Enea CR Portici, P. le E. Fermi, 1, 80055 - Portici, Naples, Italy
  • 1. Aruoja, V.& Dubourguier, H.C.& Kasemets, K.& Kahru, A., "Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata", Sci Total Environ, vol. 407, 2009, p.1461-1468
  • 2. American Society of Testing and Materials (ASTM), "Standard guide for acute toxicity test with the rotifer Brachionus", Allen, R.F. (Eds.), Annual Book of ASTM Standards, Section II-Water and Environmental Technology, 1998, p.837-843
  • 3. Behrenfeld, M.J.& O'Malley, R.T.& Siegel, D.A.& McClain, C.R.& Sarmiento, J.L.& Feldman, G.C. et al., "Climate-driven trends in contemporary ocean productivity", Nature, vol. 444, 2006, p.752-755
  • 4. Brayner, R.& Ferrari-lliou, R.& Brivois, N.& Djediat, S.& Benedetti, M.F.& Fiévet, F., "Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium", Nano Lett, vol. 6, 2006, p.866-870
  • 5. Brunauer, S.& Emmett, P.H.& Teller, E., "Adsorption of gases in multimolecular layers", J Am Chem Soc, vol. 60, 1938, p.309-319
  • 6. Davies, A.G., "Pollution studies with marine plankton. Part II. Heavy metals", Adv Mar Biol, vol. 15, 1979, p.381-508
  • 7. Dunnett, C.W., "New tables for multiple comparisons with a control", Biometrics, vol. 20, 1964, p.482-491
  • 8. Eisler, R., "Zinc Hazards to Fish, Wildlife and Invertebrates: A Synoptic Review", 1993, p.91-106
  • 9. Farré, M.& Gajda-Schrantz, K.& Kantiani, L.& Barcelò, D., "Ecotoxicity and analysis of nanomaterials in the aquatic environment", Anal Bioanal Chem, vol. 393, 2009, p.81-95
  • 10. Franklin, N.M.& Rogers, N.J.& Apte, S.C.& Batley, G.E.& Gadd, G.E.& Casey, P.S., "Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility", Environ Sci Technol, vol. 41, 2007, p.8484-8490
  • 11. Gottschalk, F.& Sonderer, T.& Scholz, R.W.& Nowack, B., "Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions", Environ Sci Technol, vol. 43, 2009, p.9216-9222
  • 12. Guillard, R.R.L., "Culture of phytoplankton for feeding marine invertebrates", Smith, W.L.& Chanley, M.H. (Eds.), Culture of Marine Invertebrate Animals, 1975, p.26-60
  • 13. Handy, R.D.& Von Der Kammer, F.& Lead, J.R.& Hassellov, M.& Owen, R.& Crane, M., "The ecotoxicology and chemistry of manufactured nanoparticles", Ecotoxicology, vol. 17, 2008, p.287-314
  • 14. Heinlaan, M.& Ivask, A.& Blinova, I.& Dubourguier, H.C.& Kahru, A., "Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus", Chemosphere, vol. 71, 2008, p.1308-1316
  • 15. IRSA-CNR, "Metodologia di saggio algale per lo studio della contaminazione delle acque marine", Quaderni dell' Istituto di Ricerca sulle Acque n. 39-IT, 1978, p.116, [ISNN 0390-6329 Milano]
  • 16. Ji, J.& Long, Z.& Lin, D., "Toxicity of oxide nanoparticles to the green algae Chlorella sp", Chem Eng J, vol. 170, 2011, p.525-530
  • 17. Jiang, W.& Mashayekhi, H.& Xing, B., "Bacterial toxicity comparison between nano- and micro scaled oxide particles", Environ Pollut, vol. 157, 2009, p.1619-1625
  • 18. Klaine, S.J.& Alvarez, P.J.J.& Batley, G.E.& Fernandes, T.F.& Handy, R.D.& Lyon, D.Y. et al., "Nanomaterials in the environment: behavior, fate, bioavailability, and effects", Environ Toxicol Chem, vol. 27, 2008, p.1825-1851
  • 19. Lapresta-Fernández, A.& Fernández, A.& Blasco, J., "Nanoecotoxicity effects of engineered silver and gold nanoparticles in aquatic organisms", TrAC Trends Anal Chem, vol. 32, 2012, p.40-59
  • 20. Limbach, L.K.& Li, Y.& Grass, R.N.& Brunner, T.J.& Hintermann, M.A.& Muller, M. et al., "Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations", Environ Sci Technol, vol. 39, 2005, p.9370-9376
  • 21. Limbach, L.K.& Wick, P.& Manser, P.& Grass, R.N.& Bruinink, A.& Stark, W.J., "Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress", Environ Sci Technol, vol. 41, 2007, p.4158-4163
  • 22. Luo, J., "Toxicity and bioaccumulation of nanomaterial in aquatic species", J US Stockh Jr Water Prize, vol. 2, 2007, p.1-16, [1:01]
  • 23. Maness, P.C.& Huang, Z.& Smolinsky, S.& Jacoby, W.& Blake, D.& Wolfrum, E., "Photosterilization and photominerization of microbial cells with titanium dioxide", Photochem Photobiol, vol. 69, 1999, p.64S-65S
  • 24. Manzo, S.& Rocco, A.& Carotenuto, R.& De Luca, Picione F.& Miglietta, M.L.& Rametta, G. et al., "Investigation of ZnO nanoparticles' ecotoxicological effects towards different soil organisms", Environ Sci Pollut Res, vol. 18, 2011, p.756-763
  • 25. Miao, A.J.& Zhang, X.Y.& Luo, Z.& Chen, C.S.& Chin, W.C.& Santschi, P.H. et al., "Zinc oxide engineered nanoparticles: dissolution and toxicity to marine phytoplankton", Environ Toxicol Chem, vol. 29, 2010, p.2814-2822
  • 26. Miglietta, M.L.& Rametta, G.& Di Francia, G.& Manzo, S.& Rocco, A.& Carotenuto, R. et al., "Characterization of nanoparticles in seawater for toxicity assessment towards aquatic organisms", Lect Notes Electr Eng, vol. 91, 2011, p.425-429
  • 27. Miller, R.J.& Lenihan, H.S.& Muller, E.B.& Tseng, N.& Hanna, S.K.& Keller, A.A., "Impact of metal oxide nanoparticles on marine phytoplankton", Environ Sci Technol, vol. 44, 2010, p.7329-7334
  • 28. Moore, D.R.J.& Caux, P.Y., "Estimating low toxic effects", Environ Toxicol Chem, vol. 16, 1997, p.794-801
  • 29. Navarro, E.& Baun, A.& Behra, R.& Hartmann, N.B.& Filser, J.& Miao, A.J. et al., "Environmental behaviour and ecotoxicity of engineered nanoparticles to algae, plants, and fungi", Ecotoxicology, vol. 17, 2008, p.372-386
  • 30. Peng, X.& Palma, S.& Fisher, N.S.& Wong, S.S., "Effect of morphology of ZnO nanostructures on their toxicity to marine algae", Aquat Toxicol, vol. 102, 2011, p.186-196
  • 31. PROSPEcT, "Ecotoxicology test protocols for representative nanomaterials in support of the OECD sponsorship programme", Toxicol Rev Nano Zinc Oxide, vol. 8, 2009, [September]
  • 32. Roelofs, F.& Vogelsberger, W., "Dissolution kinetics of synthetic amorphous silica in biological-like media and its theoretical description", J Phys Chem B, vol. 108, 2004, p.11308-11316
  • 33. Scholze, M.& Boedeker, W.& Faust, M.& Backhaus, T.& Altenburger, R.& Grimme, H., "A general best-fit method for concentration response curves and the estimation of low effect concentrations", Environ Toxicol Chem, vol. 20, 2001, p.448-457
  • 34. Shieh, J.N.& Chao, M.R.& Chen, C.Y., "Statistical comparisons of the no-observed-effect concentration and the effective concentration at 10% inhibition (EC10) in algal toxicity tests", Water Sci Technol, vol. 43, 2001, p.141-146
  • 35. Skalski, J.R., "Statistical inconsistencies in the use of no-observed-effect levels in toxicity testing", Branson, D.R.& Dickson, K.L. (Eds.), Aquatic Toxicology and Hazard Assessment: Fourth Conference. ASTM STP 737, 1981, p.377-387
  • 36. Sondi, I.& Salopek-Sondi, B., "Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria", J Colloid Interface Sci, vol. 275, 2004, p.177-182
  • 37. US EPA, "EPA 600/4-89/001 Dunnett's test", 1989
  • 38. US EPA, "A linear interpolation method for sub lethal toxicity: the inhibition concentration (ICp) approach", National Effluent Toxicity Assessment Center Technical Report 03-93, 1993
  • 39. Van Der Hoeven, N.& Noppert, F.& Annegaaike, L., "How to measure no effect. Part I: towards a new measure of chronic toxicity in ecotoxicology. Introduction and workshop results", Environmetrics, vol. 8, 1997, p.241-248
  • 40. Wong, S.W.Y.& Leung, P.T.Y.& Djurisic, A.B.& Leung, K.M.Y., "Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility", Anal Bioanal Chem, vol. 396, 2010, p.609-618
  • 41. Xia, T.& Kovochich, M.& Liong, M.& Madler, L.& Gilbert, B.& Shi, H. et al., "Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties", ACS Nano, vol. 2, 2008, p.2121-2134
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.