Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2012 | 53 | 38 | 5119-5122
Tytuł artykułu

Synthesis of substituted quinolines from N-aryl-N-(2-alkynyl)toluenesulfonamides via FeCl3-mediated intramolecular cyclization and concomitant detosylation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of substituted quinolines have been synthesized in moderate to good yields (55–81%) from easily available substrates N-aryl-N-(2-alkynyl)toluenesulfonamides via FeCl 3 -mediated intramolecular cyclization and concomitant detosylation.
Czasopismo
Rocznik
Tom
53
Numer
38
Strony
5119-5122
Opis fizyczny
Bibliografia
  • 1. Michael, J.P., Nat. Prod. Rep., vol. 25, 2008, p.166-187
  • 2. Xiao, X.-H.& Qou, G.-L.& Wang, H.-L.& Lui, L.-S.& Zheng, Y.-L.& Jia, Z.-J.& Deng, Z.-B., Chin. J. Pharmacol. Toxicol., 1988, p.232
  • 3. Efferth, T.& Fu, Y.-J.& Zu, Y.-G.& Schwarz, G.& Konkimalla, V.-S.& Wink, M., Curr. Med. Chem., vol. 14, 2007, p.2024-2032
  • 4. Bilker, O.& Lindo, V.& Panico, M.& Etiene, A.E.& Paxton, T.& Dell, A.& Rogers, M.& Sinden, R.E.& Morris, H.R., Nature, vol. 392, 1998, p.289-292
  • 5. Roma, G.& Braccio, M.D.& Grossi, G.& Mattioli, F.& Ghia, M., Eur. J. Med. Chem., vol. 35, 2000, p.1021-1026, Kalluraya, B.& Sreenivasa, S., Farmaco, vol. 53, 1998, p.399-404
  • 6. Dube, D.& Blouin, M.& Brideau, C.& Chan, C.-C.& Desmarais, S.& Ethier, D.& Falgueyret, J.P.& Friesen, R.W.& Girard, M.& Girard, Y.& Guay, J.& Reindeau, D.& Tagari, P.& Young, R.N., Bioorg. Med. Chem. Lett., vol. 8, 1998, p.1255-1260, Larsen, R.D.& Corley, E.G.& King, A.O.& Carrol, J.D.& Davis, P.& Verhoeven, T.R.& Reider, P.J.& Labelle, M.& Gauthier, J.Y.& Xiang, Y.B.& Zamboni, R.J., J. Org. Chem., vol. 61, 1996, p.3398-3405, Zwaagstra, M.E.& Timmerman, H.& van de Stolpe, A.C.& de Kanter, F.J.J.& Tamura, M.& Wada, Y.& Zhang, M.-Q., J. Med. Chem., vol. 41, 1998, p.1428-1438, von Sprecher, A.& Gerspacher, M.& Beck, A.& Kimmel, S.& Wiestner, H.& Anderson, G.P.& Niederhauser, U.& Subramanian, N.& Bray, M.A., Bioorg. Med. Chem. Lett., vol. 8, 1998, p.965-970
  • 7. Chen, Y.L.& Fang, K.C.& Sheu, J.Y.& Hsu, S.L.& Tzeng, C.C., J. Med. Chem., vol. 44, 2001, p.2374-2378
  • 8. Morizawa, Y.& Okazoe, T.& Wang, Sh-zh.& Sasaki, J.& Ebisu, H.& Nishikawa, M.& Shinyama, H., J. Fluorine Chem., vol. 109, 2001, p.83-86, Ferrarinia, P.L.& Moria, C.& Badawnehb, M.& Calderonec, V.& Grecoc, R.& Maneraa, C.& Martinellia, A.& Nieric, P.& Saccomannia, G., Eur. J. Med. Chem., vol. 35, 2000, p.815-826
  • 9. Maguire, M.P.& Sheets, K.R.& McVety, K.& Spada, A.P.& Zilberstein, A., J. Med. Chem., vol. 37, 1994, p.2129-2137
  • 10. Aggarwal, A.K.& Jenekhe, S.A., Chem. Mater., vol. 8, 1996, p.579-589, Jenekhe, S.A.& Lu, L.& Alam, M.M., Macromolecules, vol. 34, 2001, p.7315-7324, Jegou, G.& Jenekhe, S.A., Macromolecules, vol. 34, 2001, p.7926-7928
  • 11. Skraup, Z.H., Ber. Dtsch. Chem. Ges., vol. 13, 1880, p.2086-2087, Skraup, Z.H., Ber. Dtsch. Chem. Ges., vol. 15, 1882, p.897, Manske, R.H.F.& Kulka, M., Org. React., vol. 7, 1953, p.59-98
  • 12. Doebner, O.& von Miller, W., Ber. Dtsch. Chem. Ges., vol. 14, 1881, p.2812-2817, Mackenzie, A.R.& Moody, C.J.& Rees, C.W., Tetrahedron, vol. 42, 1986, p.3259-3268, Itoh, S.& Fukui, Y.& Haranou, S.& Ogino, M.& Komatsu, M.& Ohshiro, Y., J. Org. Chem., vol. 57, 1992, p.4452-4457, Boger, D.L.& Chen, J.-H., J. Org. Chem., vol. 60, 1995, p.7369-7371
  • 13. Friedlander, P., Ber. Dtsch. Chem. Ges., vol. 15, 1882, p.2572-2575
  • 14. Combes, A., Bull. Soc. Chim. Fr., vol. 49, 1888, p.89, Born, J.L., J. Org. Chem., vol. 37, 1972, p.3952-3953, Xiang, D.& Xin, X.& Liu, X.& Kumar, S.& Dong, D., Synlett, 2011, p.2187-2190
  • 15. Cheng, C.-C.& Yan, S.-J., Org. React., vol. 28, 1982, p.37-201, Thummel, R.P., Synlett, 1992, p.1-12, Eckert, H., Angew. Chem., Int. Ed. Engl., vol. 20, 1981, p.208-210, Gladiali, S.& Chelucci, G.& Mudadu, M.S.& Gastaut, M.A.& Thummel, R.P., J. Org. Chem., vol. 66, 2001, p.400-405
  • 16. Fehnel, E.A., J. Org. Chem., vol. 31, 1966, p.2899-2902
  • 17. Wu, J.& Zhang, L.& Diao, T-N., Synlett, 2005, p.2653-2657
  • 18. McNaughton, B.R.& Miller, B.L., Org. Lett., vol. 5, 2003, p.4257-4259
  • 19. Arumugam, P.& Karthikeyan, G.& Atchudan, R.& Muralidharan, D.& Perumal, P.T., Chem. Lett., vol. 34, 2005, p.314-315
  • 20. Yadav, J.S.& Reddy, B.V.S.& Premlatha, K., Synlett, 2004, p.963-966
  • 21. Genovese, S.& Epifano, F.& Marcotullio, M.C.& Pelucchini, C.& Curini, M., Tetrahedron Lett., vol. 52, 2011, p.3474-3477
  • 22. Yadav, J.S.& Reddy, B.V.S.& Sreedhar, P.& Rao, R.S.& Nagaiah, K., Synthesis, 2004, p.2381-2385
  • 23. Arcadi, A.& Chiarini, M.& Di Giuseppe, S.& Marinelli, F., Synlett, 2003, p.203-206
  • 24. Zhang, X.& Campo, M.A.& Yao, T.& Larock, R.C., Org. Lett., vol. 7, 2005, p.763-766, Wu, J.& Xia, H.-G.& Gao, K., Org. Biomol. Chem., vol. 4, 2006, p.126-129, Denmark, S.E.& Venkatraman, S., J. Org. Chem., vol. 71, 2006, p.1668-1676, Li, X.& Mao, Z.& Wang, Y.& Chen, W.& Lin, X., Tetrahedron, vol. 67, 2011, p.3858-3862
  • 25. Xie, H.& Zhu, J.& Chen, Z.& Li, S.& Wu, Y., Synlett, 2010, p.2659-2663
  • 26. Bose, D.S.& Idrees, M.& Jakka, N.M.& Venkateswara Rao, J., J. Comb. Chem., vol. 12, 2010, p.100-110
  • 27. Cho, C.S.& Kim, J.S.& Oh, B.H.& Kim, T.-J.& Shim, S.C.& Yoon, N.S., Tetrahedron, vol. 56, 2000, p.7747-7750
  • 28. Cho, C.S.& Seok, H.J.& Shim, S.O., J. Het. Chem., vol. 42, 2005, p.1219-1222, Song, G.& Gong, X.& Li, X., J. Org. Chem., vol. 76, 2011, p.7583-7589
  • 29. O’Dell, D.K.& Nicholas, K.M., J. Org. Chem., vol. 68, 2003, p.6427-6430, Lee, K.Y.& Kim, S.C.& Kim, J.N., Bull. Korean Chem. Soc., vol. 26, 2005, p.1109-1111
  • 30. Guerrini, G.& Taddei, M.& Ponticelli, F., J. Org. Chem., vol. 76, 2011, p.7597-7601
  • 31. Correa, A.& Bolm, C., Angew. Chem., Int. Ed., vol. 46, 2007, p.8862-8865, Correa, A.& Elmore, S.& Bolm, C., Chem. Eur. J., vol. 14, 2008, p.3527-3529, Correa, A.& Carril, M.& Bolm, C., Chem. Eur. J., vol. 14, 2008, p.10919-10922, Carril, M.& Correa, A.& Bolm, C., Angew. Chem., Int. Ed., vol. 47, 2008, p.4862-4865, Bonnamour, J.& Bolm, C., Org. Lett., vol. 10, 2008, p.2665-2667, Correa, A.& Mancheño, O.G.& Bolm, C., Chem. Soc. Rev., vol. 37, 2008, p.1108-1117, Sarhan, A.A.O.& Bolm, C., Chem. Soc. Rev., vol. 38, 2009, p.2730-2744, Kohno, K.& Nakagawa, K.& Yahagi, T.& Choi, J.-C.& Yasuda, H.& Sakakura, T., J. Am. Chem. Soc., vol. 131, 2009, p.2784-2785, Li, Z.& Cao, L.& Li, C.-J., Angew. Chem., Int. Ed., vol. 46, 2007, p.6505-6507, Komeyama, K.& Igawa, R.& Takaki, K., Chem. Commun., vol. 46, 2010, p.1748-1750, Li, H.& Xu, X.& Yang, J.& Xie, X.& Huang, H.& Li, Y., Tetrahedron Lett., vol. 52, 2011, p.530-533, Yao, C.& Qin, B.& Zhang, H.& Lu, J.& Wang, D.& Tu, S., RSC Adv., vol. 2, 2012, p.3759-3764, Cao, K.& Zhang, F.-M.& Tu, Y.-Q.& Zhuo, X.-T.& Fan, C.-A., Chem. Eur. J., vol. 15, 2009, p.6332-6334
  • 32. Typical procedure for the synthesis of compound 5a: To a stirred solution of compound 4a (500mg, 1.67mmol), iodobenzene (408mg, 2.00mmol) and dry Et3N (2mL), in dry DMF (8mL) catalysts, Pd(PPh3)2Cl2 (35mg, 0.05mmol) and CuI (10mg, 0.05mmol) were added and the reaction mixture was stirred at room temperature for 1h. After completion, the reaction mixture was poured into water (20mL) and extracted with CH2Cl2 (3×20mL). The organic layer was successively washed with water (5×20mL), brine (20mL) and dried over anhydrous Na2SO4. The solvent was removed under reduced pressure to give a crude mass which was chromatographed over silica gel (60–120 mesh) using ethyl acetate-petroleum ether (1:9) as eluent to afford the product 5a as a white solid. Yield: 65%; mp 74–76°C; IR (KBr): νmax=1163, 2246, 2919, 3055cm−1; 1H NMR (400MHz, CDCl3): δH=2.34 (s, 3H, CH3), 2.36 (s, 3H, CH3), 4.63 (s, 2H, NCH2), 7.12 (d, J=8.0Hz, 2H, ArH), 7.18–7.20 (m, 6H, ArH), 7.27–7.31 (m, 3H, ArH), 7.60 (d, J=8.0Hz, 2H, ArH) ppm; MS (ESI): m/z=398 [M+Na]+; Anal. Calcd for C23H21NO2S: C, 73.57; H, 5.64; N, 3.73%. Found: C, 73.43; H, 5.65; N, 3.70%.
  • 33. Typical procedure for the synthesis of quinoline derivative 6a: To a stirred solution of compound 5a (150mg, 0.39mmol) in 1,2-dichloroethane (5mL), FeCl3 (63mg, 0.39mmol) was added. The reaction mixture was then refluxed for 1h and cooled to room temperature. CH2Cl2 (50mL) was added and the organic layer was successively washed with water (2×20mL), brine (20mL) and dried over anhydrous Na2SO4. The solvent was removed under reduced pressure to give a crude mass which was flash chromatographed over silica gel (230–400 mesh) using ethyl acetate-petroleum ether (3:17) as eluent to afford the quinoline derivative 6a as a colorless gummy mass. Yield: 70%; IR (KBr): νmax=1583, 2917, 3057cm−1; 1H NMR (400MHz, CDCl3): δH=2.45 (s, 3H, CH3), 7.27 (d, J=4.4Hz, 1H, ArH), 7.48–7.56 (m, 6H, ArH), 7.65 (s, 1H, ArH), 8.07 (d, J=8.4Hz, 1H, ArH), 8.86 (d, J=4.4Hz, 1H, ArH) ppm; 13C NMR (100MHz, CDCl3): δC=21.8, 121.4, 124.5, 126.7, 128.3, 128.6, 129.5, 131.6, 136.5, 138.2, 147.3, 147.8, 149.0ppm; HRMS (ESI): Calcd for C16H13NNa [M+Na]+ 242.0946. Found: 242.0961.
  • 34. 6-Methoxy-4-(4-methoxyphenyl)-1-tosyl-1,2-dihydroquinoline (9d): Yield: 15%; white solid, mp 118–120°C; IR (KBr): νmax=1158, 2932, 3037cm−1; 1H NMR (400MHz, CDCl3): δH=2.27 (s, 3H, CH3), 3.69 (s, 3H, OCH3), 3.80 (s, 3H, OCH3), 4.47 (d, J=4.0Hz, 2H, NCH2), 5.52 (t, J=4.4Hz, 1H, CH), 6.41 (d, J=2.4Hz, 1H, ArH), 6.64 (d, J=8.4Hz, 2H, ArH), 6.76 (d, J=8.8Hz, 2H, ArH), 6.86 (dd, J=8.8, 2.8Hz, 1H, ArH), 7.02 (d, J=8.0Hz, 2H, ArH), 7.31 (d, J=8.0Hz, 2H, ArH), 7.70 (d, J=8.8Hz, 1H, ArH) ppm; 13C NMR (100MHz, CDCl3): δC=21.3, 45.6, 55.3, 55.4, 111.7, 113.0, 113.4, 121.4, 127.7, 128.5, 128.8, 129.0, 129.6, 130.4, 132.3, 136.1, 138.2, 143.2, 158.0, 159.1ppm; MS (ESI): m/z=422 [M+H]+.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.elsevier-3812c433-e94f-3ae3-8d56-efe2a6f6ee1d
Identyfikatory
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.