PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 2 | nr 2 | 95-116
Tytuł artykułu

Complex Dynamics in a Bertrand Duopoly Game with Heterogeneous Players

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A heterogeneous Bertrand duopoly game with bounded rational and adaptive players manufacturing differentiated products is subject of investigation. The main goal is to demonstrate that participation of one bounded rational player in the game suffices to destabilize the duopoly. The game is modelled with a system of two difference equations. Evolution of prices over time is obtained by iteration of a two dimensional nonlinear map. Equilibria are found and local stability properties thereof are analyzed. Complex behavior of the system is examined by means of numerical simulations. Region of stability of the Nash equilibrium is demonstrated in the plane of the speeds of adjustment. Period doubling route to chaos is presented on the bifurcation diagrams and on the largest Lyapunov characteristic exponent graph. Lyapunov time is calculated. Chaotic attractors are depicted and their fractal dimensions are computed. Sensitive dependence on initial conditions is evidenced. (original abstract)
Rocznik
Tom
2
Numer
Strony
95-116
Opis fizyczny
Twórcy
  • Warsaw School of Economics, Poland
Bibliografia
  • [1] Agiza H.N., (1998), Explicit stability zones for Cournot games with 3 and 4 competitors, "Chaos, Solitons and Fractals", 23, 1955-1966.
  • [2] Agiza H.N., (1999), On the stability, bifurcations, chaos and chaos control of Kopel map, "Chaos, Solitons and Fractals", 11, 1909-1916.
  • [3] Agiza H.N., Elsadany A.A., (2003), Nonlinear dynamics in the Cournot duopoly game with heterogeneous players, "Physica A", 320, 512-524.
  • [4] Agiza H.N., Elsadany A.A., (2004), Chaotic dynamics in nonlinear duopoly game with heterogeneous players, "Applied Mathematics and Computation", 149, 843-860.
  • [5] Agiza H.N., Hegazi A.S., Elsadany A.A., (2001), The dynamics of Bowley's model with bounded rationality, "Chaos, Solitons and Fractals", 9, 1705-1717.
  • [6] Agiza H.N., Hegazi A.S., Elsadany A.A., (2002), Complex dynamics and synchronization of duopoly game with bounded rationality, "Mathematics and Computers in Simulation", 58, 133-146.
  • [7] Bertrand J., (1883), Revue de la theorie de la recherche sociale et des recherches sur les principes mathematiques de la thematiques de la theorie des richesses, "Journal des Savants", 1883, 499-508.
  • [8] Bierman H.S., Fernandez L., (1998), Game Theory with Economic Applications, Addison-Wesley.
  • [9] Bischi G.I., Galletgatti M., Naimzada A., (1999), Symmetry-breaking bifurcations and representative firm in dynamic duopoly games, "Annals of Operations Research", 89, 253-272.
  • [10] Bischi G.I., Kopel M., (2001), Equilibrium selection in a nonlinear duopoly game with adaptive expectations, "Journal of Economic Behavior and Organization", 46, 73-100.
  • [11] Bischi G.I., Lamantia F., (2005) Coexisting attractors and complex basins in discrete time economics models, [in:] Nonlinear dynamical systems in economics, [ed.:] M. Lines, CISM, SpringerWienNewYork, 187-231.
  • [12] Bischi G.I., Naimzada A., (1999), Global analysis of a dynamic duopoly game with bounded rationality, [in:] Advances in Dynamic Games and Applications, Vol. 5., [ed.:] J.A. Filar, V. Gaitsgory, K. Mizukami, Birkhauser, Basel, 361-385.
  • [13] Brown R., Bryant P., Abarbanel H.D.I., (1991), Computing the Lyapunov spectrum of a dynamical system from an observed time series, "Physical Review A", 43, 2787-2806.
  • [14] Cournot A., (1838), Recherches sur les principes mathematiques de la theorie des richesses, Hachette, Paris.
  • [15] Dana R.A., Montrucchio L., (1986), Dynamic complexity in duopoly games, "Journal of Economic Theory", 40, 40-56.
  • [16] Den Haan W.J., (2001), The importance of the number of different agents in a heterogeneous asset-pricing model, "Journal of Economic Dynamics and Control", 25, 721-746.
  • [17] Diect L., Russel R.D., Van Vleck E.S., (1997), On the computation of Lyapunov exponents from continuous dynamical systems, "SIAM Journal on Numerical Analysis", 34, 402-423.
  • [18] Dixit A., (1986), Comparative statics for oligopoly, "International Economic Review", 27, 107-122.
  • [19] Eckmann J.P., Kamphorst S.O., Ruelle D., Ciliberto S., (1986), Lyapunov exponents from time series, "Physical Review A", 33, 1134-1140.
  • [20] Feigenbaum M.J., (1978, Quantitative universality for a class of nonlinear transformations, "Journal od Statistical Physics", 19, 25-52.
  • [21] Gandolfo G., (1997), Economic dynamics, Springer.
  • [22] Gibbons R., (1992), A Primer in Game Theory, Prentice Hall.
  • [23] Kaplan J.L., Yorke Y.A., (1979), A regime observed in a fluid flow model of Lorenz, "Communications in Mathematical Physics", 67, 93-108.
  • [24] Kopel M., (1996), Simple and complex adjustment dynamics in Cournot duopoly models, "Chaos, Solitons and Fractals", 12, 2031-2048.
  • [25] Leonard D., Nishimura K., (1999), Nonlinear dynamics in the Cournot model without full information, "Annals of Operations Research", 89, 165-173.
  • [26] Medio A., Gallo G., (1995), Chaotic dynamics: theory and applications to economics, Cambridge University Press.
  • [27] Medio A., Lines M., (2001), Nonlinear dynamics. A primer, Cambridge University Press.
  • [28] Medio A., Lines M., (2005), Introductory notes on the dynamics of linear and linearized systems, [in:] Nonlinear dynamical systems in economics, [ed.:] M. Lines, CISM, SpringerWienNewYork, 1-26.
  • [29] Oiwa N.N., Fiedler-Ferrara N., (1998), A fast algorithm for estimating Lyapunov exponents from time series, "Physics Letters A", 246, 117-121.
  • [30] Onazaki T., Sieg G., Yokoo M., (2003), Stability, chaos and multiple attractors: a single agent makes a difference, "Journal of Economic Dynamics and Control", 27, 1917-1938.
  • [31] Ott E., (1997), Chaos w ukladach dynamicznych, WNT, Warszawa.
  • [32] Puu T., (1991), Chaos in duopoly pricing, "Chaos, Solitons and Fractals", 1, 573-581.
  • [33] Puu T., (1998), The chaotic duopolists revisited, "Journal of Economic Behavior and Organization", 37, 385-394.
  • [34] Puu T., (2005), Complex oligopoly dynamics, [in:] Nonlinear dynamical systems in economics, [ed.:] M. Lines, CISM, SpringerWienNewYork, 165-186.
  • [35] Rassenti S., Reynolds S.S., Smith V.L., Szidarovszky F., (2000), Adaptation and convergence of behavior in repeated experimental Cournot games, "Journal of Economic Behavior and Organization", 41, 117-146.
  • [36] Zhang J., Da Q., Wang Y., (2007), Analysis of nonlinear duopoly game with heterogeneous players, "Economic Modelling", 24, 138-148.
  • [37] Zhang J., Da Q., Wang Y., (2009), The dynamics of Bertrand model with bounded rationality, "Chaos, Solitons and Fractals", 39, 2048-2055
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171223843
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.