ON BASES, COMPACTNESS AND WEAK CONVERGENCE
IN THE BANACH SPACE A_p

BY

J. T. MARTI (ZURICH)

1. Introduction. Let A_p ($1 \leq p < \infty$) be the Banach space of all holomorphic functions $f(z)$ in the unit disc $D = \{z \mid |z| < 1\}$ such that
$$
\int_D |f(z)|^p d\mu(z) < \infty,
$$
with norm
$$
\|f\| = \left[\int_D |f(z)|^p d\mu(z) \right]^{1/p},
$$
where μ is the planar Lebesgue measure in D. It turns out that A_p is a closed linear subspace of the Banach space $L_p(\mu)$ of the set of all equivalence classes of p-th-power integrable complex functions on D. The usual Hardy spaces H_p [3] are the Banach spaces of all elements of A_p for which the norm
$$
\|f\| = \sup \left\{ \left((2\pi)^{-1} \int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \right)^{1/p} \mid 0 \leq r < 1 \right\}
$$
is finite. A_p, as a set is distinct of H_p, i.e. for $1 \leq p < \infty$, the functions in H_p form a proper subset of A_p. This is easily seen by choosing, for example, a suitable branch of the function $(1-z)^{-1/p}$, which is in A_p but not in H_p. Next, a sequence $\{x_j\}$ in a Banach space X is called a basis for X if every x in X has the unique series expansion
$$
\lim_{n \to \infty} \sum_{j=0}^{n} a_j x_j
$$
with scalar coefficients a_j, where the convergence is in the strong topology of X. It is known that the sequence $\{x_j\}$ defined by
$$
x_j(z) = \left(\frac{(j+1)/\pi}{2^j} \right)^{1/2} z^j,
$$
forms an orthonormal basis for the Hilbert space A_2, and that the same sequence constitutes a basis for H_p ($1 < p < \infty$) [3].

In this paper we state the result that $\{x_j\}$ is a basis for A_p ($1 \leq p < \infty$). This gives an affirmative answer to the question, whether the Taylor series expansion at $z = 0$ for each function f in A_p converges to f in the topology of A_p. However, it remains an open problem whether $\{x_j\}$ forms a basis for A_1. Next, as in the case of the spaces $C(S)$ and L_p, it is possible
to specify weak convergence and conditionally compact sets in \(A_p \). Indeed, necessary and sufficient conditions can be given for the weak convergence of a sequence in \(A_p \) and also for the elements of conditionally compact sets in \(A_p \), both relating the abstract concepts with the special form of the elements as functions of the complex variable \(z \). Finally, it is shown that the shift operator \(T \) in \(A_p \), as usual defined by \((Tf)(z) = zf(z), z \in D\), has the following interesting spectral properties: The spectrum is \(\bar{D} \), the point spectrum is empty, the residual spectrum is \(D \) and the continuous spectrum is the unit circle.

2. A basis for the Banach space \(A_p \). The proof that \(A_p \) \((1 \leq p < \infty)\) is a Banach space is, in principle, based on the following estimate. It is easy to see that every \(f \) in \(A_p \) satisfies the mean value equation

\[
f(z) = \frac{1}{\pi(1-|z|)^2} \int_{|\lambda-z|<1} f(\lambda) d\mu(\lambda), \quad z \in D,
\]

from which one obtains

\[
|f(z)| \leq \left[\pi(1-|z|)^2 \right]^{-1/p} ||f||, \quad z \in D.
\] (1)

We omit this proof, since it follows directly the lines of that for the case \(p = 2 \) given in [2], where Hölder’s inequality is used instead of Schwarz’s.

The following lemma is substantial for proving the theorem on the existence of the basis \(\{x_j\} \) for \(A_p \):

Lemma 1. If \(1 \leq p < \infty \), the sequence \(\{x_j\} \) is total in \(A_p \).

Proof. If \(f \) is any element of \(A_p \) with Taylor series \(\sum_{j=0}^{\infty} a_j z^j \) in \(D \), we define the function \(f_t, 0 < t < 1, \) on \(D \) by \(f_t(z) = f(tz), z \in D \). Since the Taylor series for \(f(z) \) converges absolutely and uniformly for \(|z| \leq t \), the Taylor series \(\sum_{j=0}^{\infty} a_j t^j z^j \) for \(f_t(z) \) converges absolutely and uniformly in \(D \). Hence \(f_t \) is an element of \(\text{sp}\{x_j\} \) in \(A_p \) for each \(t \in (0, 1) \). We show that, given \(\varepsilon > 0 \), there exists a \(t \) in \((0, 1) \) for which \(||f-f_t|| < \varepsilon \).

Since \(f \in L_1(\mu) \), there is a \(\delta \in (0, \frac{1}{2}) \) such that

\[
\left[\int_{1-\delta<|z|<1} |f(z)|^p d\mu(z) \right]^{1/p} < \varepsilon/5.
\]

Taking \(r = 1 - \delta/2 \), we thus have

\[
\left[\int_{r<|z|<1} |f_t(z)|^p d\mu(z) \right]^{1/p} = \left[t^{-2} \int_{t r<|z|<t} |f(z)|^p d\mu(z) \right]^{1/p} < 2 \varepsilon/5
\]
for $t \varepsilon(r, 1)$. The uniform and absolute convergence of the Taylor series for $f(z)$ for $|z| \leq r$ implies the existence of an integer n for which

$$
\sum_{j=n+1}^{\infty} |a_j(1-t^j)x^j| < \pi^{-1/p} \varepsilon/5,
$$

$|z| \leq r$ and $t \varepsilon(r, 1)$. Furthermore, there is a fixed $t \varepsilon(r, 1)$, depending on n, such that

$$
\sum_{j=0}^{n} |a_j(1-t^j)x^j| < \pi^{-1/p} \varepsilon/5, \quad |z| \leq r.
$$

Therefore, one has

$$
\|f-f_t\| \leq \left[\int_{0<|z|<r} |f(z) - f_t(z)|^p \, d\mu(z) \right]^{1/p} + \left[\int_{r<|z|<1} |f(z)|^p \, d\mu(z) \right]^{1/p} +
$$

$$
+ \left[\int_{r<|z|<1} |f_t(z)|^p \, d\mu(z) \right]^{1/p} + \sum_{j=0}^{n} |a_j(1-t^j)x^j|^p \, d\mu(z) \right]^{1/p} +
$$

$$
+ \left[\int_{0<|z|<r} \sum_{j=n+1}^{\infty} |a_j(1-t^j)x^j|^p \, d\mu(z) \right]^{1/p} + \varepsilon/5 + 2\varepsilon/5 < \varepsilon,
$$

which is the desired result.

There is a more general concept than that of a basis [5]: A biorthogonal system $\{x_j, x_j^*\}$ is called a Markušević basis for X, if $\{x_j\}$ is total in X and $\{x_j^*\}$ in X^* is such that for every $x \in X$, $x_j^*(x) = 0$, all j, implies $x = 0$. It is clear that the functionals $x_j^* \in A_p^*$, defined by

$$
x_j^*(f) = \int_{D} f(z) \overline{x_j(z)} \, d\mu(z),
$$

are biorthogonal to the x_j's used in the above lemma. Also, $x_j^*(f)$ is proportional to the j-th coefficient of the Taylor series for f at $z = 0$. From this it follows that $x_j^*(f) = 0$, $f \in A_p$, $j = 0, 1, \ldots$, implies $f = 0$. Thus, as an immediate consequence of Lemma 1, one obtains

Corollary 2. If $1 \leq p < \infty$, $\{x_j\}$ is a Markušević basis for A_p.

One of the most important theorems in the theory of bases is the theorem of Grinblyum-Nikol’skii [6] which states that a sequence $\{x_j\}$ in X^* is a basis for $\overline{span}\{x_j\}$ if and only if there is a constant $K \geq 1$ such that

$$
\left\| \sum_{j=m}^{n} a_j x_j \right\| \leq K \left\| \sum_{j=n}^{\infty} a_j x_j \right\|
$$
for every pair of integers m, n with $m \leq n$ and any scalars a_j. Now, using the fact that for $1 < p < \infty$ the trigonometrical system forms [7] a basis for $L_p[0, 2\pi]$ and by a twofold application of the Grinblyum-Nikol’skii theorem, it is possible to prove

Theorem 3. If $1 < p < \infty$, the sequence $\{x_j\}$ is a basis for A_p and the associated biorthogonal set to $\{x_j\}$ is $\{x_j^*\}$.

3. **Compact sets and weak convergence in A_p.** It is of special interest to investigate the conditionally compact sets in A_p; as has been done for many other important spaces, such as $O(S)$ (theorem of Arzelà-Ascoli) or L_p (cf. [1]).

Theorem 4. Let $1 \leq p < \infty$. A set K in A_p is conditionally compact if and only if

(i) K is bounded,

(ii) the functions in K are equicontinuous on each compact subset of D and

(iii) $\lim_{r \to 1} \int_{|z| < 1} |f(z)|^p d\mu(z) = 0$ uniformly for all f in K.

Proof. Let S be any compact set in D and let $\delta = 1 - \sup \{|z| : z \in S\}$. If K is conditionally compact, then K is bounded and for every $\varepsilon > 0$ there exist functions f_1, \ldots, f_n in K such that

$$\inf_{i \leq n} \|f_i - f_i^*\| < (\pi \delta^2)^{1/p} \varepsilon / 3$$

for each f in K (i.e. K is totally bounded). Then, by estimate (1) we have on S, $|f(z)| \leq (\pi \delta^2)^{-1/p} \|f\|$. Given any z_0 in S we can choose a neighborhood N of z_0 in D such that

$$\sup_{i \leq n} |f_i(z) - f_i(z_0)| < \varepsilon / 3, \quad z \in N.$$

Thus for $f \in K$ and some $i \leq n$ we have on $N \cap S$

$$|f(z) - f(z_0)| \leq |f(z) - f_i(z)| + |f_i(z) - f_i(z_0)| + |f_i(z_0) - f(z_0)|$$

$$< 2(\pi \delta^2)^{-1/p} \|f - f_i\| + \varepsilon / 3 < \varepsilon,$$

showing that the functions in K are equicontinuous on S.

In a similar manner we can prove the last statement of the theorem. Let $r < 1$ be such that $\sup \{\|\chi_r f_i\| : i \leq n\} < \varepsilon / 2$, where χ_r is the characteristic function of the set $\{z \in D : |z| > r\}$. By Minkowski's inequality one obtains for some $i \leq n$,

$$\|\chi_r f\| \leq \|\chi_r (f - f_i)\| + \|\chi_r f_i\| < \|f - f_i\| + \varepsilon / 2 < 2\varepsilon$$

and so $\lim_{r \to 1} \|\chi_r f\| = 0$ uniformly for all f in K.

To prove the converse we assume (i), (ii) and (iii) to be true. Let $r < 1$. By (ii) the subset $K_r = \{(1 - \chi_r)f : f \in K\}$ of the Banach space
$C(D_r), D_r = \{z \in D \mid |z| \leq r\}$ (the norm in D_r given by $\|g\|_\infty = \sup_{z \in D_r} |g(z)|, g \in C(D_r)$) is equicontinuous and by (i),

$$\sup_{r \leq n} \{\|g\|_\infty \mid g \in K_r\} \leq [\pi(1-r)^2]^{-1/p} \sup \{\|f\|_i \mid f \in K\} < \infty.$$

Thus the theorem of Arzelà-Ascoli ([1], p. 266) applies and K_r is conditionally compact, hence totally bounded in $C(D_r)$. Therefore, given $\varepsilon > 0$, there exist functions f_1, \ldots, f_n in K such that

$$\inf_{i \leq n} \|(1 - \chi_r)(f - f_i)\|_\infty < \pi^{-1/p} \varepsilon / 3$$

for every $f \in K$. According to (iii) we now take r such that $\sup \{\|\chi_r f\|_i \mid f \in K\} < \varepsilon / 3$ and have for every f in K and some $i \leq n$,

$$\|f - f_i\| \leq \|(1 - \chi_r)(f - f_i)\| + \|\chi_r(f - f_i)\|$$

$$< \pi^{1/p} \|(1 - \chi_r)(f - f_i)\| + 2\varepsilon / 3 < \varepsilon.$$

Consequently, K is totally bounded in A_p. Since \overline{K} is complete, it follows that K is a conditionally compact subset of A_p (or equivalently, since A_p is a metric space, K is sequentially compact).

In the case $1 < p < \infty$, A_p is reflexive and it is possible to characterize weak convergence in A_p. One observes that from estimate (1) it immediately follows that for any fixed z in D, the functional x^*_z on A_p defined by $x^*_z(f) = f(z), f \in A_p$, belongs to A^*_p so that the weak convergence of a sequence $\{f_n\}$ in A_p implies simple convergence of $f_n(z)$ in D.

Theorem 5. A sequence $\{f_n\}$ in $A_p, 1 < p < \infty$, converges weakly to zero if and only if it is bounded and for each $j \geq 0$ the coefficient a_{nj} of the Taylor series $\sum_{j=0}^{\infty} a_{nj}z^j$ for $f_n(z)$ converges to zero with n.

Proof. If $\{f_n\}$ converges weakly to zero, $\{f_n\}$ must be bounded. Moreover, since

$$a_{nj} = ((j+1)/\pi)^{1/2} x^*_j(f_n),$$

where $\{x^*_j\}$ is the biorthogonal sequence in A^*_p which belongs to the basis $\{x_j\}$ of Theorem 3, it follows that

$$\lim_{n} a_{nj} = ((j+1)/\pi)^{1/2} \lim_{n} x^*_j(f_n) = 0, \quad j = 0, 1, \ldots$$

This is the necessary condition.

Conversely, suppose that $\lim_{n} a_{nj} = 0$ for all j. Since A_p is reflexive, the basis $\{x_j\}$ for A_p has, by a known theorem of James ([4], p. 519), the following property:
For any \(x^* \in A_p^* \) one has
\[
\limsup_m \left\{ |x^*(x)| \left| x \in \text{sp} \{x_m, x_{m+1}, \ldots \}, \|x\| = 1 \right\} = 0
\]
(i.e. the basis is shrinking). Now, due to the principle of uniform boundedness, there is a constant \(K \geq 1 \) such that
\[
\sup_m \sup \left\{ \left\| \sum_{j=m}^{\infty} x_j^* (x) x_j \right\| \left| \|x\| \leq 1 \right\} \leq K.
\]
Hence
\[
\sup \left\{ \left| x^* \left(\sum_{j=m}^{\infty} x_j^* (x) x_j \right) \right| \left| x \in A_p, \|x\| \leq 1 \right\} \leq \sup \left\{ |x^*(x)| \left| x \in \text{sp} \{x_m, x_{m+1}, \ldots \}, \|x\| \leq K \right\}.
\]
Thus
\[
\limsup_m \left\{ |x^* \left(\sum_{j=m}^{\infty} x_j^* (x) x_j \right) \right\| \left| x \in A_p, \|x\| \leq 1 \right\} = 0
\]
and we have for every \(\varepsilon > 0 \) an \(m \) such that
\[
\sup_n \left| x^* \left(f_n - \sum_{j=m}^{\infty} x_j^* (f_n) x_j \right) \right| < \varepsilon/2,
\]
where without loss of generality one may take \(x^* \) and all \(f_n \)'s of norm one. Because there is an \(n_\varepsilon \), depending on \(m \), for which
\[
\left\| \sum_{j=m}^{n} x_j^* (f_n) x_j \right\| = \left\| \sum_{j=m}^{n} (\pi/(j+1))^{1/2} a_{nj} x_j \right\| < \varepsilon/2, \quad n \geq n_\varepsilon,
\]
one gets
\[
|x^* (f_n)| \leq |x^* \left(f_n - \sum_{j=m}^{\infty} x_j^* (f_n) x_j \right) | + \left\| \sum_{j=m}^{n} x_j^* (f_n) x_j \right\| < \varepsilon, \quad n \geq n_\varepsilon,
\]
and the theorem follows.

4. The spectrum of the shift operator. Let \(T: A_p \to A_p \) be the linear operator defined by \((Tf)(z) = zf(z), z \in D\). It is immediate that \(T \), usually called shift operator, is bounded, with norm \(\|T\| \leq 1 \). Therefore the spectrum \(\sigma(T) \) of \(T \) must be contained in the closed unit disc \(\overline{D} \). If \(\sigma_p(T), \sigma_r(T) \) and \(\sigma_c(T) \) denote the point spectrum, residual spectrum and continuous spectrum respectively, and if \(\delta D \) denotes the unit circle \(\overline{D} - D \), we can determine the partition of \(\overline{D} \) into the mutually exclusive sets \(\sigma_p(T), \sigma_r(T) \) and \(\sigma_c(T) \).

Theorem 6. The shift operator \(T \) has the following spectral properties:
(i) \(\sigma(T) = \overline{D}, \)
(ii) \(\sigma_p(T) \) is empty,
(iii) $\sigma_r(T) = D$
(iv) $\sigma_c(T) = \delta D$.

Proof. Assume $\lambda \in D$ but $\lambda \notin \sigma(T)$. Then $(\lambda I - T)^{-1}$ would exist and would be bounded in A_p. Thus $(\lambda I - T)^{-1}f$ would be in A_p for any f in A_p which is a contradiction since $(\lambda - z)^{-1}f(z)$ is not holomorphic in D. This shows that $D \subset \sigma(T)$ and, since $\sigma(T)$ is closed, (i) follows. Next, because $(\lambda I - T)f = 0$, $f \in A_p$, implies $(\lambda - z)f(z) = 0$ and thus $f(z) = 0$, $z \not= \lambda$, it is clear that $\sigma_p(T)$ is empty.

To determine whether a point λ of $\sigma(T)$ is in $\sigma_r(T)$ or in $\sigma_c(T)$, we look at the range of the operator $\lambda I - T$. Let first λ be in D. Suppose that the range of $\lambda I - T$ is dense in A_p. Then, given f in A_p with $f(\lambda) \neq 0$, there would exist a sequence $\{g_n\}$ in A_p such that $\lim_{n}(\lambda I - T)g_n = f$. But by estimate (1) this would imply that

$$\lim_{n}(\lambda - z)g_n(z) = f(z), \quad z \in D,$$

and hence that $f(\lambda) = 0$ which is impossible. Thus $D \subset \sigma_r(T)$. On the other hand, if λ is of modulus 1, then the range of $\lambda I - T$ is dense in A_p (it is always assumed that $1 \leq p < \infty$), i.e. for every $f \in A_p$ there exists a sequence $\{g_n\}$ in A_p with

$$\lim_{n}\|f - (\lambda I - T)g_n\| = 0.$$

Let $\{g_n\}$ be defined by

$$g_n(z) = f(z) \sum_{j=0}^{n}(z^j/\lambda^{j+1}), \quad z \in D.$$

Clearly, $g_n \in A_p$. By

$$(\lambda - z)g_n(z) = f(z)\left[\sum_{j=0}^{n}(z/\lambda)^j - \sum_{j=1}^{n+1}(z/\lambda)^j\right] = f(z)\left[1 - (z/\lambda)^{n+1}\right],$$

it is apparent that

$$\|f - (\lambda I - T)g_n\| = \left[\int_{D} |f(z)z^{n+1}|^p d\mu(z)\right]^{1/p} \leq r^{n+1}\left[\int_{0<|z|<r} |f(z)|^p d\mu(z)\right]^{1/p} + \left[\int_{r<|z|<1} |f(z)|^p d\mu(z)\right]^{1/p}, \quad 0 < r < 1.$$

Given $\epsilon > 0$, it is now possible to choose r such that the last term on the right-hand side of the above inequality is smaller than $\epsilon/2$. On the other hand, the first term on the right is dominated by $r^{n+1}\|f\|$ so that $\|f - (\lambda I - T)g_n\| < \epsilon$ for n large enough. Hence $(\lambda I - T)(A_p) = A_p$,
implying that $\delta D \subset \sigma_c(T)$. Since the sets $\sigma_r(T)$ and $\sigma_c(T)$ are disjoint, one obtains the results (iii) and (iv).

Corollary 7. T is not compact.

The result is an immediate consequence of the fact that the non-zero points in the residual spectrum of a compact linear operator are isolated.

REFERENCES

Reçu par la Rédaction le 2. 12. 1968