The radius of p-valent starlikeness for certain classes of analytic functions*

by DONALD J. WRIGHT (Kentucky)

1. Introduction. Let $E = \{z: |z| < 1\}$. Suppose p is a positive integer and let $S^*(p, a)$ denote the class of functions $f(z) = z^p + \sum_{k=0}^{\infty} a_k z^k$ which are regular in E and satisfy $\Re\{sf^*(z)/f(z)\} > a, z \in E, 0 \leq a < p$. The members of $S^*(p, a)$ are p-valent and starlike in $E \ [2]$. Let $n > p$ be a positive integer and suppose $g_n(z) = \sum_{k=0}^{\infty} b_k z^k$, $b_n \neq 0$, is regular in E.

We consider the class of functions $h_n(z) = f(z) + g_n(z)$, where $f(z) \in S^*(p, a)$ and $g_n(z)$ satisfies $\Re\{g_n(z)/f(z)\} > -1, z \in E$. In the first part of this paper we determine the radius of p-valent starlikeness for this class and also for the subclass consisting of those functions $h_n(z) = f(z) + g_n(z)$ for which $|g_n(z)| \leq |f(z)|, z \in E$.

Let $CS^*(p, a)$ denote the class of functions $h(z) = z^p + \sum_{k=0}^{\infty} c_k z^k$ which are regular in E and satisfy $\Re\{h(z)/f(z)\} > 0, z \in E$, for some $f(z) \in S^*(p, a)$. When $p = 1$, $a = 0$, this definition gives the class of close-to-star functions introduced by Reade \[6\]. If $h(z) \in CS^*(p, a)$, then $h(z) = f(z) + [h(z) - f(z)] = f(z) + g_n(z)$, where $f(z) \in S^*(p, a)$ and $g_n(z) = \sum b_k z^k$ ($n > p$) is regular and satisfies $\Re\{g_n(z)/f(z)\} > -1, z \in E$. Similarly, if $|h(z)/f(z) - 1| < 1, z \in E$, then $h(z) = f(z) + g_n(z)$, where $|g_n(z)| \leq |f(z)|, z \in E$. Thus, the results mentioned above yield the radius of p-valent starlikeness for the class $CS^*(p, a)$ and that of the subclass of $CS^*(p, a)$ consisting of those functions $h(z)$ which satisfy $|h(z)/f(z) - 1| < 1, z \in E$, for some $f(z) \in S^*(p, a)$.

Suppose $0 < \beta \leq 1$. In the last section we give the radius of p-valent starlikeness for the two subclasses of $CS^*(p, a)$ consisting of the functions $h(z)$ which satisfy respectively $\Re\{h(z)/f(z)\}^{1/\beta} > 0$, and $|\{h(z)/f(z)\}^{1/\beta} - 1| < 1, z \in E$, for some $f(z) \in S^*(p, a)$.

* This is a part of the author's Ph. D. thesis written under the direction of Professor S. M. Shah at the University of Kentucky.
The results in the paper are extensions of some similar work done by MacGregor [3] and [4].

2. Preliminaries. We shall make frequent use of the fact that for a function \(h(z) = z^p + \sum_{k=p+1}^{\infty} c_k z^k \) which is regular in \(|z| < r \), the condition \(\text{Re}\{zh'(z)/h(z)\} > 0 \), \(|z| < r \), is necessary and sufficient for \(h(z) \) to be \(p \)-valent and starlike for \(|z| < r \) [2].

The following lemma is well-known for the case \(p = 1, a = 0 \) ([5], p. 173, problem 11). The general result is easily obtained from this special case.

Lemma 1. If \(P(z) = p + \sum_{k=1}^{\infty} p_k z^k \) is regular in \(E \) and satisfies \(\text{Re}\{P(z)\} > \alpha \), \(0 \leq \alpha < p \), then

\[
\text{Re}\{P(z)\} \geq \frac{p - (p-2\alpha)|z|}{1+|z|}, \quad z \in E.
\]

We shall also need the following extension of Schwartz's lemma ([1], p. 290).

Lemma 2. If \(\varphi(z) = d_0 + \sum_{k=1}^{\infty} d_k z^k \), \(m \geq 1 \), is regular and bounded by 1 in \(E \), then

\[
|\varphi'(z)| \leq \frac{m|z|^{m-1}}{1-|z|^{2m}} \left(1 - |\varphi(z)|^2\right), \quad z \in E.
\]

If \(d_0 = 0 \), then

\[
|\varphi(z)| \leq |z|^m, \quad z \in E.
\]

3. Main results.

Theorem 1. If \(f(z) \in S^*(p, a) \) and \(\text{Re}\{g_n(z)/f(z)\} > -1 \), \(z \in E \), then \(h_n(z) = f(z) + g_n(z) \) is \(p \)-valent and starlike for \(|z| < r(p, a, n) \), where \(r(p, a, n) \) is the smallest positive root of

\[
\lambda(p, a, n; x) = p - (p-2a)x - 2(n-p)x^{n-p} - 2(n-p)x^{n-p+1} - px^{2(n-p)} + (p-2a)x^{2(n-p)+1} = 0.
\]

Proof. The function \(k(z) = -2z/(1+z) \) maps \(E \) onto the half plane \(\text{Re}\{w\} > -1 \), and by hypothesis, \(g_n(z)/f(z) \) is subordinate to \(k(z) \). Thus, there is a function \(\varphi(z) \) which is regular and bounded by 1 in \(E \) such that

\[
\frac{g_n(z)}{f(z)} = \frac{-2\varphi(z)}{1+\varphi(z)}.
\]

Furthermore, \(\varphi(z) \) has a zero of order \(n-p \) at \(z = 0 \). It follows that

\[
h_n(z) = f(z) \left\{ \frac{1-\varphi(z)}{1+\varphi(z)} \right\}.
\]
and a computation yields

\[\frac{zh_n'(z)}{h_n(z)} = \frac{zf'(z)}{f(z)} - \frac{2zp'(z)}{1 - \varphi^2(z)}. \]

The functions \(zf'(z)/f(z)\) satisfies the hypotheses of Lemma 1, so from (1) we obtain

\[\Re \left\{ \frac{zh_n'(z)}{h_n(z)} \right\} \geq \frac{p - (p - 2a)|z|}{1 + |z|} - \frac{2|z|\varphi'(z)}{|1 - \varphi^2(z)|}. \]

Applying (2) with \(m = n - p\) yields

\[\frac{|z|\varphi'(z)}{|1 - \varphi^2(z)|} \leq \frac{(n - p)|z|^{n-p}(1 - |\varphi(z)|^2)}{(1 - |z|^{2(n-p)})(1 - |\varphi(z)|^2)} = \frac{(n - p)|z|^{n-p}}{1 - |z|^{2(n-p)}}, \]

and thus

\[\Re \left\{ \frac{zh_n'(z)}{h_n(z)} \right\} \geq \frac{p - (p - 2a)|z|}{1 + |z|} - \frac{2(n - p)|z|^{n-p}}{1 - |z|^{2(n-p)}}. \]

The last expression is positive for \(|z| < r(p, a, n)\), and so \(h_n(z)\) is \(p\)-valent and starlike for \(|z| < r(p, a, n)\).

If \(f(z) = z^p/(1 + z)^{(n-p)}\) and \(g_n(z) = -2z^{n-p}f(z)/(1 + z^{n-p})\), then \(\Re \{zh_n'(z)/h_n(z)\} = 0\) for \(z = r(p, a, n)\). Thus, for this choice of \(f(z)\) and \(g_n(z)\) the function \(h_n(z)\) is not \(p\)-valent and starlike in \(|z| < r\) for any \(r > r(p, a, n)\).

Corollary. \(\Re \{g_n(z)/z^p\} > -1, z \in E\), then \(h_n(z) = z^p + g_n(z)\) is \(p\)-valent and starlike for

\[|z| < \left\{ \frac{p - n + \sqrt{(n-p)^2 + p^2}}{p} \right\}^{1/(n-p)}. \]

Proof. Letting \(f(z) = z^p\) in Theorem 1 yields

\[\Re \left\{ \frac{zh_n'(z)}{h_n(z)} \right\} \geq \frac{p - 2(n - p)|z|^{n-p}}{1 - |z|^{2(n-p)}} = \frac{p - 2(n - p)|z|^{n-p} - p|z|^{2(n-p)}}{1 - |z|^{2(n-p)}}, \]

so \(\Re \{zh_n'(z)/h_n(z)\} > 0\) for

\[|z| < \left\{ \frac{n - p - \sqrt{(n-p)^2 + p^2}}{-p} \right\}^{1/(n-p)}. \]

The radius is exact for the choice \(g_n(z) = -2z^n/(1 + z^{n-p})\).
THEOREM 2. If \(f(z) \in S^+(p, a) \) and \(|g_n(z)| \leq |f(z)|, z \in E \), then \(h_n(z) = f(z) + g_n(z) \) is \(p \)-valent and starlike for \(|z| < R(p, a, n) \), where \(R(p, a, n) \) is the smallest positive root of

\[
\mu(p, a, n; x) = p - (p - 2a)x - nx^{n-p} - (n + 2a - 2p)x^{n-p+1} = 0.
\]

Proof. Let \(\varphi(z) = g_n(z)/f(z) = \sum_{n-p}^\infty d_k z^k \). Then \(\varphi(z) \) is regular and bounded by 1 in \(E \), and

\[
h_n(z) = f(z) \{1 + \varphi(z)\}.
\]

A computation yields

\[
\frac{zh_n'(z)}{h_n(z)} = \frac{zf'(z)}{f(z)} + \frac{z\varphi'(z)}{1 + \varphi(z)},
\]

and so

\[
\text{Re} \left\{ \frac{zh_n'(z)}{h_n(z)} \right\} \geq \frac{p - (p - 2a)|z|}{1 + |z|} - \frac{|z||\varphi'(z)|}{|1 + \varphi(z)|}.
\]

Applying (2) and (3) with \(m = n-p \) we get

\[
\frac{|z||\varphi'(z)|}{|1 + \varphi(z)|} \leq \frac{(n - p)|z|^{n-p}(1 - |\varphi(z)|^4)}{(1 - |z|^{2n-p})(1 - |\varphi(z)|^4)} \leq \frac{(n - p)|z|^{n-p}(1 + |z|^{n-p})}{1 - |z|^{2n-p}}.
\]

Thus,

\[
\text{Re} \left\{ \frac{zh_n'(z)}{h_n(z)} \right\} \geq \frac{p - (p - 2a)|z|}{1 + |z|} - \frac{(n - p)|z|^{n-p}}{1 - |z|^{n-p}} = \frac{\mu(p, a, n; |z|)}{(1 + |z|)(1 - |z|^{n-p})},
\]

and the last expression is positive for \(|z| < R(p, a, n) \).

To see that the result is sharp let \(f(z) = z^p/(1 + z)^{2(n-p)} \) and \(g_n(z) = -z^{n-p}f(z) \), in which case, \(\text{Re} \{zh_n'(z)/h_n(z)\} = 0 \) for \(z = R(p, a, n) \).

COROLLARY. If \(|g_n(z)| \leq |z|^p, z \in E \), then \(h_n(z) = z^p + g_n(z) \) is \(p \)-valent and starlike for \(|z| < (p/n)^{(n-p)} \).

Proof. Letting \(f(z) = z^p \) in Theorem 2 yields

\[
\text{Re} \left\{ \frac{zh_n'(z)}{h_n(z)} \right\} \geq \frac{p - (n - p)|z|^{n-p}}{1 - |z|^{n-p}} = \frac{p - n|z|^{n-p}}{1 - |z|^{n-p}},
\]

and the result follows. The radius \((p/n)^{(n-p)} \) is exact for the choice \(g_n(z) = -z^n \).

4. Throughout this section \(h(z) \) denotes a function of the form

\[
h(z) = z^p + \sum_{p+1}^\infty c_k z^k
\]

which is regular in \(E \) and vanishes only at \(z = 0 \). We assume \(0 < \beta \leq 1 \).
Theorem 3. If \(f(z) \in S^*(p, a) \) and \(\text{Re}\{h(z)/f(z)\}^{1/\beta} > 0, z \in E \), then \(h(z) \) is \(p \)-valent and starlike for

\[
|z| < \sigma(p, a, \beta) = \frac{(p + \beta - a) - \sqrt{(p + \beta - a)^2 - p(p - 2a)}}{p - 2a},
\]

where the expression above is defined by its limit when \(a = p/2 \).

Proof. With the appropriate choice of the branch, \(\{h(z)/f(z)\}^{1/\beta} \) takes the value 1 at \(z = 0 \) and is subordinate to \((1 - z)/(1 + z)\). Thus

\[
h(z) = f(z) \left(\frac{1 - \varphi(z)}{1 + \varphi(z)} \right)^\beta,
\]

where \(\varphi(z) \) is regular and bounded by 1 in \(E \), \(\varphi(0) = 0 \). A computation yields

\[
\frac{zh_n'(z)}{h_n(z)} = \frac{zf'(z)}{f(z)} - \frac{2\beta z\varphi'(z)}{1 - \varphi^2(z)},
\]

and from (2) with \(m = 1 \) we get

\[
\text{Re} \left\{ \frac{zh_n'(z)}{h_n(z)} \right\} \geq \frac{p - (p - 2a)|z|}{1 + |z|} - \frac{2\beta |z| |\varphi'(z)|}{1 - |\varphi(z)|^2} \geq \frac{p - (p - 2a)|z|}{1 + |z|} - \frac{2\beta |z|}{1 - |z|^2} = \frac{p - 2(p + \beta - a)|z| + (p - 2a)|z|^2}{1 - |z|^2}.
\]

The last expression is positive for \(|z| < \sigma(p, a, \beta) \), and so \(h_n(z) \) is \(p \)-valent and starlike for \(|z| < \sigma(p, a, \beta) \).

The radius \(\sigma(p, a, \beta) \) is exact for the choice \(f(z) = z^p/(1 + z)^{(p - a)} \) and \(h(z) = f(z)\{((1 - z)/(1 + z))^{1/\beta}\} \).

Corollary. If \(\text{Re}\{h(z)/z^p\}^{1/\beta} > 0, z \in E \), then \(h(z) \) is \(p \)-valent and starlike for

\[
|z| < \frac{-\beta + \sqrt{\beta^2 + p^2}}{p}.
\]

Proof. If \(f(z) = z^p \) in Theorem 3, then

\[
\text{Re} \left\{ \frac{zh'(z)}{h(z)} \right\} \geq p - \frac{2\beta |z|}{1 - |z|^2} \geq \frac{p - 2\beta |z| - p |z|^2}{1 - |z|^2},
\]

and the result follows.

The radius is exact for the choice \(h(z) = z^p\{((1 - z)/(1 + z))^{1/\beta}\} \).
Theorem 4. If \(f(z) \epsilon S^*(p, a) \) and \(\{|h(z)/f(z)|^{1/\beta} - 1| < 1, z \epsilon E \), then \(h(z) \) is \(p \)-valent and starlike for

\[
|z| < \Sigma(p, a, \beta) = \frac{(2p + \beta - 2a - \sqrt{(2p + \beta - 2a)^2 - 4p(p - 2a - \beta)}}{2(p - 2a - \beta)},
\]

where the expression above is defined by its limit when \(a = (p - \beta)/2 \).

Proof. With the appropriate choice of the branch, \(\{|h(z)/f(z)|^{1/\beta} \) takes the value 1 at \(z = 0 \) and is subordinate to \(1 + z \). Thus,

\[
h(z) = f(z)(1 + \varphi(z))^\beta,
\]

where \(\varphi(z) \) is regular and bounded by 1 in \(E \), \(\varphi(0) = 0 \). It follows that

\[
\frac{zh'(z)}{h(z)} = \frac{zf'(z)}{f(z)} + \frac{\beta z\varphi'(z)}{1 + \varphi(z)},
\]

and from (2) and (3) with \(m = 1 \) we get

\[
\text{Re} \begin{Bmatrix} \frac{zh'(z)}{h(z)} \end{Bmatrix} \geq \frac{p - (1 - 2a)|z|}{1 + |z|} - \frac{\beta |z| |\varphi'(z)|}{1 - |\varphi(z)|}
\]

\[
\geq \frac{p - (p - 2a)|z|}{1 + |z|} - \frac{\beta |z|}{1 - |z|}
\]

\[
= \frac{p - (2p + \beta - 2a)|z| + (p - 2a - \beta)|z|^2}{1 - |z|^2}.
\]

The last expression is positive for \(|z| < \Sigma(p, a, \beta) \).

The radius \(\Sigma(p, a, \beta) \) is exact for the choice \(f(z) = z^p/(1 + z)^{(p-a)} \) and \(h(z) = f(z)(1 - z)^\beta \).

Corollary. If \(\{|h(z)/z^p|^{1/\beta} - 1| < 1, z \epsilon E \), then \(h(z) \) is \(p \)-valent and starlike for \(|z| < p/(p + \beta) \).

Proof. Letting \(f(z) = z^p \) in Theorem 4 yields

\[
\text{Re} \begin{Bmatrix} \frac{zh'(z)}{h(z)} \end{Bmatrix} \geq \frac{p - \beta |z|}{1 - |z|} = \frac{p - (p + \beta)|z|}{1 - |z|},
\]

and so \(\text{Re} (zh'(z)/h(z)) > 0 \) for \(|z| < p/(p + \beta) \).

The radius \(p/(p + \beta) \) is exact for the choice \(h(z) = z^p(1 - z)^\beta \).

References

pp. 59-62.

UNIVERSITY OF KENTUCKY
LEXINGTON, Kentucky

Reçu par la Rédaction le 27. 7. 1968