ON EXTREME OPERATORS

BY

G. MÄGERL (ERLANGEN)

Introduction. The problem to characterize the extreme points of $U(E, F)$, the unit ball in the space of linear operators from a Banach space E to a Banach space F, was investigated by several authors (see, e.g., [1], [3], [4], [7], the literature cited there, and the survey article [2]). The most desirable characterization seems to be that an operator T is extreme iff its adjoint T^* maps a dense subset of the extreme points of the unit ball in F^* into the extreme points of the unit ball in E^*. (It is easy to see that an operator satisfying this condition is extreme.)

A theorem of that type, extending a result of Blumenthal et al. [1], is stated by Fakhoury in [4]. However, the proof given there appears to be incomplete (see Remark 2 below) and it is the aim of this note to provide a complete proof of that theorem.

Notation. For a compact Hausdorff space X we let $C(X)$ be the Banach space (under the supremum norm) of continuous real-valued functions on X and identify its dual with the space $M(X)$ of real Radon measures on X which will always carry the weak* (or vague) topology. If $\sigma: X \to X$ is an involution (i.e. σ composed with itself is the identity on X) which is continuous, we let

$$C_\sigma(X) := \{f \in C(X) : f \circ \sigma = -f\}$$

be the Banach space of odd continuous functions on X. Its dual may be identified with the set

$$M_\sigma(X) := \{\mu \in M(X) : \mu \circ \sigma = -\mu\}$$

of odd measures on X, where $\mu \circ \sigma(f) := \mu(f \circ \sigma)$ for f in $C(X)$. An identification of the fixed points of σ yields another compact Hausdorff space X' and another continuous involution $\sigma': X' \to X'$ such that $C_{\sigma'}(X')$ is isometric to $C_\sigma(X)$. Therefore, since we are only interested in the spaces $C_\sigma(X)$, we may and do always assume that σ has at most one fixed point.
Then the map
\[\omega : X \to M^1_\sigma(X) := \{ \mu \in M_\sigma(X) : \|\mu\| \leq 1 \} \]
defined by
\[x \to \omega_x := \frac{1}{2} (\varepsilon_x - \varepsilon_{\sigma(x)}) \]
is a homeomorphic embedding (\(\varepsilon_x \) denotes the point mass concentrated at \(x \)). Further, the set \(\text{ex}M^1_\sigma(X) \) of extreme points in \(M^1_\sigma(X) \) is exactly \(\{ \omega_x : x \in X, x \neq \sigma(x) \} \). Therefore, its closure is either \(\text{ex}M^1_\sigma(X) \cup \{0\} \) or \(\text{ex}M^1_\sigma(X) \) itself, depending on whether \(\sigma \) has a non-isolated fixed point or not.

The Theorem. We now state Fakhoury's theorem in a version slightly different from that given in [4].

Theorem. Let \(X \) and \(Y \) be compact Hausdorff spaces, let \(\sigma : X \to X \) and \(\tau : Y \to Y \) be continuous involutions, and suppose that \(X \) is a metrizable space. Let \(U \) be the convex set of linear operators from \(C_\sigma(X) \) into \(C_\tau(Y) \) with norm not greater than 1.

Then for \(T \in U \) the following statements are equivalent:

1. \(T \) is an extreme point of \(U \).

2. There exists a dense open set \(D \subseteq \text{ex}M^1_\sigma(Y) \) such that \(T^*(D) \subseteq \text{ex}M^1_\sigma(X) \).

We have already mentioned that (2) implies (1). To prove the converse we proceed in three steps, each step represented by a lemma.

The Lemmata. Our first lemma is a part of the proof of Theorem 1 in [1] and stated without proof.

Lemma 1. Let \(K \) be a compact Hausdorff space. Then the set-valued maps \(\Phi^+ \) and \(\Phi^- \) from the unit ball \(M^1(K) \) of \(M(K) \) into its non-empty compact convex subset, defined by
\[\Phi^+(\mu) := \{ \nu \in M^1(K) : 0 \leq \nu \leq \mu^+ \}, \quad \Phi^-(\mu) := \{ \nu \in M^1(K) : 0 \leq \nu \leq \mu^- \}, \]
are lower semicontinuous in the sense of Michael [5].

Lemma 2. Let \(X \) and \(\sigma \) be as in the statement of the Theorem. Suppose that \(\lambda \in M^1_\sigma(X) \) is such that the support of \(\lambda^+ \) contains at least two points. Then there exists a continuous map \(g : M^1_\sigma(X) \to M^1_\sigma(X) \) such that

(a) \(g(-\mu) = -g(\mu) \) for all \(\mu \),

(b) \(\|\mu \pm g(\mu)\| \leq 1 \) for all \(\mu \),

(c) \(g(\lambda) \neq 0 \).

Proof. By our assumption there exists a compact subset \(F \) of \(X \) such that \(0 < \lambda^+(F) < \lambda^+(X) \). Let \(\nu \in M^1(X) \) be defined by \(\nu(h) := \lambda^+(h|F) \) for \(h \) in \(C(X) \). From Lemma 1 and from Michael's continuous selection
theorem [6] we infer that there exist continuous maps f^+ and f^- from $M^1_0(X)$ into $M^1(X)$ such that

$$0 \leq f^+(\mu) \leq \mu^+ \quad \text{and} \quad 0 \leq f^-(\mu) \leq \mu^- \quad \text{for all} \ \mu,$$

$$f^+(\lambda) = \nu, \quad f^-(\lambda) = \lambda^-, \quad f^+(\lambda) = f^-(\lambda) = 0.$$

Define $f: M^1_0(X) \to M^1(X)$ by

$$f(\mu) := f^-(\mu) \|f^+(\mu)\| + f^+(\mu)\|f^-(\mu)\|.$$

Since the norm is weak* continuous on the cone of positive measures, f is continuous. Further, $\|\mu \pm f(\mu)\| \leq 1$ holds for all μ (see, e.g., [1], p. 751).

Finally, let

$$g(\mu) := \frac{1}{2}[f(\mu) - f(\mu) \circ \sigma + f(-\mu) \circ \sigma - f(-\mu)].$$

Then one easily verifies that g maps $M^1_0(X)$ into itself, is continuous, and satisfies (a) and (b). It remains to show that $g(\lambda) \neq 0$ holds. If not, then

$$0 = \lambda^- \|\nu\| + \nu \|\lambda^-\| - (\lambda^- \circ \sigma) \|\nu\| - (\nu \circ \sigma) \|\lambda^-\|,$$

hence $\|\nu\|(\lambda^- \circ \sigma - \lambda^-) = \|\lambda^-\|(\nu - \nu \circ \sigma)$. Now $\lambda^- \circ \sigma = \lambda^+$ because λ is odd, and we get $0 \leq \nu \circ \sigma \leq \lambda^+ \circ \sigma = \lambda^-$, which implies that ν and $\nu \circ \sigma$ are mutually singular. Therefore $\lambda^+ = \alpha \nu$ must hold. But this fact and the choice of ν let us end up with the absurd inequality

$$0 < \lambda^+(X \setminus F) = \alpha \nu(X \setminus F) = a\lambda^+((X \setminus F) \cap F) = 0.$$

The next lemma is modelled after a similar lemma due to Sharir [7], Theorem 1.

Lemma 3. Let Y and τ be as in the statement of the Theorem, E a Banach space, and $S: E \to C_\tau(Y)$ an extreme point of $U(E, C_\tau(Y))$. Then the set

$$D := \{\mu \in \text{ex}M^1_0(Y): \|S^*(\mu)\| = 1\}$$

is dense in $\text{ex}M^1_0(Y)$.

Proof. We first observe that $\text{ex}M^1_0(Y)$ is open in its closure, and therefore a Baire space. The map $e^* \to \|e^*\|$ is weak* lower semicontinuous on E^*, which implies that the set

$$D_n := \{\mu \in \text{ex}M^1_0(Y): \|S^*(\mu)\| > 1 - 1/n\}$$

is open for each positive integer n. Hence, by Baire's category theorem, the lemma is proved if we can show that each of the sets D_n is dense.
Suppose this is false for some n. Choose μ_0 in $\text{ex} M^1_n(Y)$ not in the closure of D_n. Then $\mu_0 \neq 0$ and $\mu_0 \neq -\mu_0$; hence there exists a continuous real-valued function k on the closure of $\text{ex} M^1_n(Y)$ such that $0 \leq k \leq 1$, $k(\mu_0) = 1$, $k(-\mu_0) = 0$, and $k(\mu) = 0$ for all μ in D_n. Then the function \hat{k} on Y defined by
\[\hat{k}(y) := \frac{1}{2} [k(\omega_y) - k(-\omega_y)] \]
is in $C_\tau(Y)$ and $0 < \|\hat{k}\| \leq 1$. Choose e^* in E^* with $\|e^*\| = 1$ and define $H: E \to C_\tau(Y)$ by
\[[H(e)](y) := (1/n) \hat{k}(y) e^*(e) \]
for e in E and y in Y. Then H is linear, $\|H\| \leq 1$, $H \neq 0$, and it is easily checked that $\|S \pm H\| \leq 1$ holds. Consequently, S would not be extreme and we obtain a contradiction.

Proof of the Theorem. Let T be an element of $\text{ex} U$. We first show that $T^*(\text{ex} M^1_n(Y))$ is contained in $Z := \{a\omega_x: 0 \leq a \leq 1, x \in X\}$. Suppose that $T^*(\omega_a) = \lambda$ is not in Z for some a in Y with $a \neq \tau(a)$. Then the support of λ^+ contains more than one point. Let $g: M^1_n(X) \to M^1_o(X)$ be a map as described in Lemma 2 and define a linear operator $G: C_o(X) \to C_\tau(Y)$ by
\[[G(h)](y) := \langle g(T^*(\omega_y)), h \rangle \]
for y in Y and h in $C_o(X)$. Then $G \neq 0$ and $\|T \pm G\| \leq 1$, which is impossible because T is an extreme point of U.

Next, we infer from Lemma 3 that $\|T^*(\nu)\| = 1$ for all ν in a dense subset D of $\text{ex} M^1_n(Y)$. Therefore, the image $T^*(D)$ is contained in $\{\omega_x: x \in X, x \neq \sigma(x)\}$ which is $\text{ex} M^1_o(X)$. We infer also that $T^*(\text{ex} M^1_n(Y))$ is contained in the closure of $\text{ex} M^1_o(X)$ which in turn is contained in $\text{ex} M^1_o(X) \cup \{0\}$. Consequently, D is in fact equal to $\text{ex} M^1_o(Y) \setminus [(T^*)^{-1}(0)]$, and therefore open in $\text{ex} M^1_n(Y)$.

This completes the proof of the Theorem.

Remarks. 1. Denoting, as we already did, the homeomorphic embeddings of X and Y into $\text{ex} M^1_o(X)$ and $M^1_\tau(Y)$ by the same symbol ω and defining $\varphi: Y \to X$ by $\varphi(y) := \omega^{-1} T^* \omega_y$, we see that, under the hypotheses of the Theorem, an operator T in $\text{ex} U$ is induced in the following sense:

There exists a continuous map $\varphi: Y \to X$ such that
\[\varphi(\tau(y)) = \sigma(\varphi(y)) \text{ for all } y \in Y, \]
\[[T(f)](y) = f(\varphi(y)) \text{ for all } y \in Y \text{ and } f \in C_o(X), \]

$\varphi^{-1}(x_o) \cap (Y \setminus \{y_o\})$ has an empty interior, where x_o and y_o are the fixed points — if there are any — of σ and τ, respectively.

Since, conversely, an induced operator is always extreme in U and since $C_o(X)$ is separable iff X is metrizable, we also get Fakhoury's theorem as in [4].
2. The gap in the proof of Theorem 14 in [4] occurs on page 2017, where it is implicitly assumed that for a non-zero non-extreme element υ of $M_1^*(X)$ the set

$$\{υ' ∈ M_1^*(X) : υ' = fυ, f ∈ L^1(υ), 1 ≤ f ≤ 2\}$$

contains elements different from υ. But this can be true only if $||υ|| < 1$. This means that from the arguments in [4] one can only conclude that for every μ in $exM_1^*(Y)$ the norm of $T^*(μ)$ is either 0 or 1. Obviously, this fact combined with Lemma 2 would be sufficient to prove the Theorem; however, since Lemma 3 does not depend on any special property of E, it seemed justified to include it and use it in lieu of Fakhoury’s result.

REFERENCES

MATHEMATISCHES INSTITUT
UNIVERSITÄT ERLANGEN-NÜRNBERG
ERLANGEN

Reçu par la Rédaction le 5. 1. 1980