CALCULATION OF ALL MARGINAL MEANS FROM AN n-WAY TABLE

1. Procedure declaration. Given a factorial design with n factors, procedure \textit{means} finds all marginal means for all levels of all factors. The resulting values are located in a one-dimensional array together with entering data scores.

Data:

n — number of factors;
$f[1:n]$ — levels of factors;
\textit{transfer} — identifier of the procedure providing, in the inverse lexicographical order, subsequent data scores obtained from the factorial design; it can contain only one instruction, e.g. the instruction of reading the subsequent data scores from punched tape;
\textit{setup} — identifier of the procedure which sets the auxiliary arrays g, h as follows:

\begin{verbatim}
procedure setup(n, f, g, h);
 value n; integer n; integer array f, g, h;
 begin integer k; h[n] := 1; g[n] := f[n];
 for k := n-1 step -1 until 1 do begin
 g[k] := f[k]; h[k] := (f[k+1]+1) x h[k+1]
 end k
end setup
\end{verbatim}

\textit{address} — identifier of the integer procedure; given a one-dimensional array a containing all marginal means the procedure \textit{address} finds the number s such that $a[s]$ represents the marginal mean for a given set of factor levels.

The procedure \textit{address} should be described as follows:

\begin{verbatim}
integer procedure address (n, f, fl, h);
integer n; integer array f, fl, h;
begin integer i, k; k := 0;
for i := n step -1 until 1 do
 k := k + (f[i] - fl[i]) x h[i];
end address
\end{verbatim}
address := k

end address

Results:

\[a[0: \prod_{i=1}^{n} (f[i] + 1) - 1] \] — array containing data scores (brought in by procedure transfer) and calculated marginal means.

2. Method used. It will be explained by an example. Let \(x_{ijk} \) represent a data score from a factorial design with \(n = 3 \) factors, say \(A, B, C \). The subsequent factors are numbered from the left to the right. Let us assume further that the factor \(A \) occurs at \(f[I] = 2 \) levels, the factor \(B \) at \(f[2] = 3 \) levels and the factor \(C \) at \(f[3] = 4 \) levels.

The index \(i \) in \(x_{ijk} \) represents the actual level of factor \(A \), the index \(j \) — the actual level of factor \(B \), and the index \(k \) — the actual level of factor \(C \). A dot on the place of an index denotes averaging over this factor.

Procedure means acts for the example just described as follows:

I. First the elements \(x_{111}, x_{112}, x_{113}, x_{114} \) brought in by procedure transfer are located in the array \(a \) as elements \(a[0], a[1], a[2], a[3] \). They are averaged over the third factor. So the marginal mean \(x_{11} \) is obtained and located as \(a[4] \).

II. Next we change the level of the second factor. The elements \(x_{121}, x_{122}, x_{123}, x_{124} \) are brought in and averaged at the same time to obtain the marginal mean \(x_{12} \). They are located as \(a[5], a[6], a[7], a[8], a[9] \).

III. We change once more the level of the second factor, obtain the elements \(x_{131}, x_{132}, x_{133}, x_{134}, x_{13} \) and locate them as \(a[10], a[11], a[12], a[13], a[14] \).

IV. At that point all the levels of factor \(B \) are exhausted. We calculate now the averages \(x_{11.1}, x_{11.2}, x_{11.3}, x_{11.4}, x_{11} \) and locate them as \(a[15], a[16], a[17], a[18], a[19] \).

Next we repeat steps I-IV for the second level of factor \(A \) to get the elements \(a[20]-a[39] \).

Having exhausted all levels of factor \(B \), we calculate all means averaged over the factor \(A \). The final result, i.e. the location of data scores and marginal means in the array \(a \), is the following (to be read in the row sequence):

\[
\begin{align*}
&x_{111} \quad x_{112} \quad x_{113} \quad x_{114} \quad x_{11} \\
&x_{121} \quad x_{122} \quad x_{123} \quad x_{124} \quad x_{12} \\
&x_{131} \quad x_{132} \quad x_{133} \quad x_{134} \quad x_{13} \\
&x_{11.1} \quad x_{11.2} \quad x_{11.3} \quad x_{11.4} \quad x_{11} \\
&x_{211} \quad x_{212} \quad x_{213} \quad x_{214} \quad x_{21} \\
&x_{221} \quad x_{222} \quad x_{223} \quad x_{224} \quad x_{22} \\
\end{align*}
\]
3. Certification. Let be given the data scores for a 3-factor design with factors A, B, C at $f[1] = 2$, $f[2] = 3$, $f[3] = 4$ levels, respectively, as shown in Table 1.

TABLE 1. A record of data from a 3-factor design

<table>
<thead>
<tr>
<th></th>
<th>$C1$</th>
<th>$C2$</th>
<th>$C3$</th>
<th>$C4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A1$</td>
<td>$B1$</td>
<td>6.5</td>
<td>2.7</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>$B2$</td>
<td>5.2</td>
<td>4.5</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>$B3$</td>
<td>5.6</td>
<td>4.1</td>
<td>3.6</td>
</tr>
<tr>
<td>$A2$</td>
<td>$B1$</td>
<td>6.5</td>
<td>4.2</td>
<td>4.7</td>
</tr>
<tr>
<td></td>
<td>$B2$</td>
<td>5.1</td>
<td>3.5</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>$B3$</td>
<td>6.1</td>
<td>3.2</td>
<td>3.7</td>
</tr>
</tbody>
</table>

The data scores are stored in the row sequence in the following order: 6.5, 2.7, 4.0, 4.1, 5.2, 4.5, 4.1, 3.4, 5.6, 4.1, 3.6, 5.5, 6.5, 4.2, 4.7, 4.4, 5.1, 3.5, 4.9, 5.2, 6.1, 3.2, 3.7, 3.8.

These results put together in the row sequence are given in Table 2.

TABLE 2. Data with marginal means

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>$C2$</th>
<th>$C3$</th>
<th>$C4$</th>
<th>$C*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$A1$</td>
<td>$B1$</td>
<td>6.5</td>
<td>2.7</td>
<td>4.0</td>
<td>4.1</td>
</tr>
<tr>
<td></td>
<td>$B2$</td>
<td>5.2</td>
<td>4.5</td>
<td>4.1</td>
<td>3.4</td>
</tr>
<tr>
<td></td>
<td>$B3$</td>
<td>5.6</td>
<td>4.1</td>
<td>3.6</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>$B*$</td>
<td>5.767</td>
<td>3.767</td>
<td>3.900</td>
<td>4.333</td>
</tr>
<tr>
<td>$A2$</td>
<td>$B1$</td>
<td>6.5</td>
<td>4.2</td>
<td>4.7</td>
<td>4.4</td>
</tr>
<tr>
<td></td>
<td>$B2$</td>
<td>5.1</td>
<td>3.5</td>
<td>4.9</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td>$B3$</td>
<td>6.1</td>
<td>3.2</td>
<td>3.7</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>$B2$</td>
<td>5.150</td>
<td>4.000</td>
<td>4.500</td>
<td>4.300</td>
</tr>
<tr>
<td></td>
<td>$B3$</td>
<td>5.850</td>
<td>3.650</td>
<td>3.650</td>
<td>4.650</td>
</tr>
<tr>
<td></td>
<td>$B*$</td>
<td>5.833</td>
<td>3.700</td>
<td>4.167</td>
<td>4.400</td>
</tr>
</tbody>
</table>
procedure means(n,f,a,transfer,setup,address);

value n;
integer n;
integer array f;
array a;
procedure transfer,setup;
integer procedure address;

begin
integer fk,i,k,mk,m1,r,r1,s,s1,s2;
real x,y,z;
integer array f1,m[1:n];
s:=0;
setup(n,f,f1,m);
r:=f[n];
k:=n-1;
fk:=r1:=f[k];
y:=1.0/r;
data:
x:=.0;
for i:=1 step 1 until r do

begin
transfer(z);
x:=x+z;
a[s]:=z;
s:=s+1;
end i;
a[s]:=x*y;
s:=s+1;
fk:=fk-1;
end procedure.
if $f_k > 0$
 then go to data;

sum:
 $f_1[k] = f[k]$
 $s_1 = \text{address}(n, f, f_1, m)$
 $f_k = f[k]$
 $m_1 = m_k = m[k]$
 $z = 1.0/f_k$

sum_1
 $s_2 = s_1$
 $x = .0$
 for $i = 1 \text{ step } 1 \text{ until } f_k \text{ do}$
 begin
 $x = x + a[s_2]$
 $s_2 = s_2 + m_k$
 end i;
 $a[s] = x \times z$
 $s = s + 1$
 $m_1 = m_1 - 1$
 $s_1 = s_1 + 1$
 if $m_1 > 0$
 then go to sum_1
 $k_k = k - 1$
 if $k < 0$
 then go to fin
 if $f_1[k] = 1$
 then go to sum
 $f_1[k] = f_1[k] - 1$
 $k = n - 1$
 $f_k = r_1$
 go to data;
 fin:
 end means
4. Additional remarks. Procedure means is the starting point for calculations of variance analysis for a factorial design.

The procedure published here gives the same results as the procedure means published by Gower [1]. Some trial values of run times on the ODRA 1204 computer are shown in Table 3.

<table>
<thead>
<tr>
<th>parameters</th>
<th>(n = 3)</th>
<th>(n = 4)</th>
<th>(n = 5)</th>
<th>(n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([5, 5, 5])</td>
<td>([5, 5, 5, 5])</td>
<td>([4, 4, 4, 4, 4])</td>
<td>([2, 2, 3, 4, 2, 4])</td>
<td></td>
</tr>
</tbody>
</table>

We see that the new procedure is much faster: it needs less than 1/10 of the time needed by Gower’s procedure.

Reference

Procedura *means* wchodzi w zestaw procedur obliczających analizę wariancji dla doświadczenia czynnikowego.

Dane:

- n — liczba czynników;
- $f[1:n]$ — poziomy czynników;
- transfer — nazwa procedury dostarczającej kolejny element danych; treścią tej procedury może być np. `read(x)`, gdzie x jest liczbą rzeczywistą;
- setup — nazwa procedury nadającej początkowe wartości tablicom pomocniczym g, h;
- address — nazwa funkcji całkowitej, obliczającej adres elementu tablicy danych, lub średniej marginesowej określonej za pomocą tablic f, f_l, h.

Wyniki:

- $a[0: \prod_{i=1}^{n} (f[i]+1)-1]$ — tablica rzeczywista zawierająca tablicę danych i średnie marginesowe.