ON THE DIOPHANTINE EQUATION \(x^p + y^{2p} = z^2 \)

BY

A. ROTKIEWICZ AND A. SCHINZEL (WARSZAWA)

It was shown by Chao Ko [1], [2] that the equation \(x^p + 1 = z^2 \) has no solutions in positive integers if \(p \) is a prime greater than 3. E. Z. Chein [3] and the first-named author [5] gave simpler proofs of Ko's result, G. Terjanian [8] proved that if \(x, y, z \) are positive integers such that \(x^{2p} + y^{2p} = z^2 \) then \(2p \) divides \(x \) or \(y \). In this paper we shall use some ideas contained in the quoted papers of Chein and Terjanian to prove the following extensions of Ko's and Terjanian's results.

Theorem 1. If \(x^p + y^{2p} = z^2 \), where \(p \) is a prime greater than 3, \(x, y \) and \(z \) are non-zero integers then

\[
p < 2|y|, \quad |x| < 8y^{2p+2}.
\]

If \((x, y) = 1, 2|x, y > 0, z > 0 \) then \(8|x \) and there exists another solution satisfying the same conditions.

Theorem 2. If \(x, y, z \) are positive integers such that \(x^{2p} + y^{2p} = z^2 \) then \(4p|x \) or \(4p|y \).

Remark 1. According to a result of Shorey [8] if \((x, z) = 1 \) and \(|x| > 1 \) the greatest prime factor of \(z^2 - x^p \) is greater than \(c \left(\frac{\log p}{\log \log p} \right)^{1/2} \), where \(c \) is a positive constant. It follows that under the assumptions of Theorem 1 both \(x \) and \(y \) have a prime factor greater than \(c \left(\frac{\log p}{\log \log p} \right)^{1/2} \).

The proofs of our theorems are based on three lemmas.

Lemma 1. Let \((x, y) = 1 \) and \(p \) be a prime \(> 3 \). If \(p|z, 2 \nmid z \) or \(p \nmid z, 2|z \) then the equation \(x^p + y^p = z^2 \) is impossible.

For the proof see [6].

Lemma 2. If \(p \) is an odd prime and \((x, y) = 1 \), \(p \nmid x + y \) then

\[
\left(\frac{x^p + y^p}{x + y}, x + y \right) = 1.
\]
This lemma is notorious and its proof may be omitted.

LEMMA 3. If under the assumptions of Theorem 1, \((x, y) = 1, 2|x\) and \(y > 0\) then there exist coprime positive integers \(a, b\) and an \(\varepsilon = \pm 1\) such that \(a > b, 2|ab\)

\[
y|ab, \quad \left(\frac{ab}{y}, y\right) = 1
\]

and either

\[
4^{p-1} \left(\frac{ab}{y}\right)^p = (a-\varepsilon b)^p + \varepsilon y^p, \quad x = \frac{4ab(a-\varepsilon b)}{y}
\]

or

\[
4^{p-1} \left(\frac{ab}{y}\right)^p = y^p - (a-b)^p, \quad x = \frac{-4ab(a-b)}{y}
\]

Proof. From \((x, y) = 1, x^p + y^{2p} = z^2\) it follows that \((y, z) = 1\) and from \(2|x\) we obtain \((z + y^p, z - y^p) = 2\). Thus \(x^p = (z - y^p) (z + y^p)\) and for a suitable \(\varepsilon = \pm 1\)

\[
z + \varepsilon y^p = 2^{p-1} x_1^p,

z - \varepsilon y^p = 2 x_2^p,

x = 2x_1, x_2, \quad 2 \not| x_2, \quad (x_1, x_2) = 1.
\]

Consequently, \(2\varepsilon y^p = 2^{p-1} x_1^p - 2x_2^p\); hence

\[
x_2^p = 2^{p-2} x_1^p - \varepsilon y^p.
\]

But (4) holds if and only if

\[
(2\varepsilon x_1 y)^p + (x_2^p)^p = (x_2^p + 2\varepsilon y^p)^2.
\]

From \(2 \not| x_2\) it follows that \(2 \not| x_2^p + 2\varepsilon y^p\). Since \((x_1, x_2) = 1, 2 \not| x_2, (x, y) = 1, x_2|x\), we have \((2\varepsilon x_1 y, x_2^p) = 1\). If \(p|x_2^p + 2\varepsilon y^p\) then by Lemma 1 the equation (5) is impossible. Thus we can assume that \(p \not| x_2^p + 2\varepsilon y^p\). By Lemma 2 we have

\[
\left(\frac{(2\varepsilon x_1 y)^p + (x_2^p)^p}{2\varepsilon x_1 y + x_2^p}, 2\varepsilon x_1 y + x_2^p\right) = 1
\]

and (5) implies

\[
2\varepsilon x_1 y + x_2^p = h^2, \quad \text{where } h|x_2^p + 2\varepsilon y^p, h > 0.
\]

But (6) holds if and only if

\[
(h x_2)^2 + (x_1 y)^2 = (x_2^p + \varepsilon x_1 y)^2.
\]
The equalities \((x_1, x_2) = 1, (y, x_2) = 1, h^2 = 2ex_1y + x_2^2\) imply \((hx_2, x_1, y) = 1\). Since \(x_2\) is odd, so is \(h\); thus \(4|h^2 - x_2^2\) and \(2|x_1y\). Hence the solutions of (7) are given by
\[
h|x_2| = a^2 - b^2, \quad |x_1|y = 2ab, \quad |x_2^2 + \varepsilon x_1y| = a^2 + b^2,
\]
where \(a, b\) are coprime positive integers, \(a > b, 2|ab\). The equality \(x_2^2 + \varepsilon x_1y = -(a + eb \text{ sgn } x_1)^2\) would imply
\[
x_2^2 = x_2^2 + \varepsilon x_1y - \varepsilon x_1y = -(a + eb \text{ sgn } x_1)^2,
\]
which is impossible. Thus \(x_2^2 + \varepsilon x_1y = a^2 + b^2\) and
\[
x_2^2 = x_2^2 + \varepsilon x_1y - \varepsilon x_1y = (a - eb \text{ sgn } x_1)^2
\]
and since \(a > b\),
\[
(8) \quad |x_2| = a - eb \text{ sgn } x_1, \quad |x_1| = \frac{2ab}{y}.
\]

Since \((x_1, y) = 1\), we get (1). If \(x > 0\) there is no loss of generality in assuming \(x_1 > 0, x_2 > 0\) and then (4) and (8) give (2). If \(x < 0\) (4) gives
\[
-|x_2|^p = 2^{p-2}|x_1|^p - ey^p \text{ sgn } x_1;
\]
thus \(\varepsilon \text{ sgn } x_1 = 1\) and (8) implies (3).

Proof of Theorem 1. Let \(x^p + y^2 = z^2\), where \(p\) is a prime > 3 and \(x, y, z\) are non-zero integers. We assume without loss of generality that \(y > 0, z > 0\). We shall consider successively the following cases:

(i) \((x, y) = 1, 2|x, x > 0\);
(ii) \((x, y) = 1, 2|x, x < 0\);
(iii) \((x, y) = 1, 2 \nmid x\);
(iv) \((x, y) \neq 1\).

In the case (i) by Lemma 3 there exist coprime positive integers \(a, b\) and an \(\varepsilon = \pm 1\) such that \(a > b, 2|ab\) and (1), (2) hold. We must have \(b < y\), otherwise the left-hand side of (2) is greater than the right-hand side.

Assume first that \(a < 6y^2\). Since \(x\) is even, \(y\) is odd,
\[
\frac{(a - eb)^p + ey^p}{a - eb + \varepsilon y} \equiv 1 \pmod{2}
\]
and (2) gives
\[
4^{p-1}|a - eb + \varepsilon y \quad \text{and} \quad 4^{p-1} \leq a + y < 6y^2 + y.
\]
Hence \(p < 2y + 1\) and since \(p\) is odd, \(p < 2y\). Moreover, (2) gives
\[
\frac{a}{(a, y)}|\varepsilon (y^p - bp);
\]
hence
\[a \leq (a, y)(y^p - b^p) < y^{p+1} \]
and by (2)
\[x = \frac{4ab(a-\varepsilon b)}{y} < 8a^2 < 8y^{2p+2}. \]

Assume now that \(a \geq 6y^2 \). Since \(y \) is odd, we have \(y \neq 4b \). If we had \(y \geq 4b + 1 \) it would follow
\[\left(\frac{4ab}{y} \right)^p \leq a^p \left(\frac{y-1}{y} \right)^p. \]

On the other hand,
\[(a-\varepsilon b)^p + \varepsilon y^p > \begin{cases} a^p \left(1 - \frac{b}{a} \right)^p \geq a^p \left(1 - \frac{1}{6y} \right)^p & \text{if } \varepsilon = 1, \\ a^p \left(1 - \left(\frac{y}{a} \right)^p \right) \geq a^p \left(1 - \frac{1}{6y} \right)^p & \text{if } \varepsilon = -1. \end{cases} \]

Thus we would get from (2)
\[\left(\frac{y-1}{y} \right)^p > 4 \left(1 - \frac{1}{6y} \right)^p, \]
a contradiction. Therefore, \(y \leq 4b-1 \) thus
\[\left(\frac{4ab}{y} \right)^p \geq a^p \left(\frac{y+1}{y} \right)^p. \]

On the other hand,
\[(a-\varepsilon b)^p + \varepsilon y^p < \begin{cases} a^p \left(1 + \left(\frac{y}{a} \right)^p \right) < a^p \left(1 + \frac{1}{6y} \right)^p & \text{if } \varepsilon = 1, \\ a^p \left(1 + \frac{b}{a} \right)^p < a^p \left(1 + \frac{1}{6y} \right)^p & \text{if } \varepsilon = -1. \end{cases} \]

Therefore, we get from (2)
\[\left(\frac{y+1}{y} \right)^p < 4 \left(1 + \frac{1}{6y} \right)^p, \]
\[\left(1 + \frac{5}{6y+1} \right)^p < 4. \]

Since \(y > b \geq 1 \), we have \(y \geq 3 \) and
\[\left(1 + \frac{5}{6y+1} \right)^{2y} \geq \left(\frac{24}{19} \right)^6 > 4. \]
Thus $p < 2y$ and the estimate (9) for x is proved as before.

In the case (ii) by Lemma 3 there exist coprime positive integers a, b such that $a > b, 2|ab$ and (1), (3) hold. Since

$$\frac{y^p - (a - b)^p}{y - (a - b)} \equiv 1 \pmod{2},$$

it follows from (3) that

$$4^{p-1} | y - (a - b), \quad 4^{p-1} \leq y - (a - b) < y$$

and trivially $p < 2y$.

The equation $x^p + y^{2p} = z^2$ gives directly $|x| < y^2 < 8y^{2p+2}$.

In the case (iii) $x^p + y^{2p} = z^2$ implies

$$x^p = (z - y^p)(z + y^p), \quad (z - y^p, z + y^p) = 1$$

and

$$z - y^p = x_1^p, \quad z + y^p = x_2^p, \quad x_2 > |x_1|,$$

(10)

$$x_2^p - x_1^p = 2y^p.$$

In virtue of Zsigmondy's theorem [10] the left-hand side has a prime factor of the form $pk + 1$. Since it divides y, we have $y \geq 2p + 1$.

If $x_2 < p$ we have $|x| = |x_1| |x_2| < x_2^p < p^2 < y^2$.

If $x_2 \geq p$ we have

$$x_2^p - x_1^p \geq x_2^p - (x_2 - 2)^p > 2x_2^{p-1},$$

and (10) gives

$$2x_2^{p-1} < 2y^p; \quad x_2 < y^{p(p-1)}.$$

Hence $|x| = |x_1| |x_2| < x_2^p < y^{2p(p-1)} < y^3$.

In the case (iv) we proceed by induction with respect to (x, y). If $(x, y) = 1$ the theorem holds as we have just proved. Assume that it holds if $(x, y) < d$ and let $(x, y) = d > 1$. If q is a prime dividing d and

$$q^a || x, \ q^b || y, \ q^c || z$$

we infer from $x^p + y^{2p} = z^2$ that either $2\beta \leq \alpha, \ p\beta \leq \gamma$ or $2\beta > \alpha$ and $p\alpha = 2\gamma$, in which case α is even. Let us put

$$\delta = \begin{cases} \beta & \text{if } 2\beta \leq \alpha, \\ \alpha/2 & \text{if } 2\beta > \alpha. \end{cases}$$
The numbers $xq^{-2\delta}$, $yq^{-\delta}$ and $zq^{-p\delta}$ satisfy the same equation as x, y, z, moreover $(xq^{-2\delta}, yq^{-\delta}) \leq dq^{-\delta} < d$. Hence by the inductive assumption
\[p < 2yq^{-\delta}, \quad |xq^{-2\delta}| < 8(yq^{-\delta})^{2p+2} \]
and $p < 2y, |x| < 8y^{2p+2}$. The inductive proof of the first part of the theorem is complete.

To prove the second part let us note that if $(x, y) = 1, 2|x, y > 0, z > 0$ then by Lemma 3

either $x > 0$, $xy = 4ab(a-eb)$ or $x < 0$, $xy = -4ab(a-b)$

and $2|ab, 2|y$ implies $x \equiv 0 \pmod{8}$. Moreover by (5) the equation $x^p + y^{2p} = z^2$ besides the solution $\langle 2x_1, x_2, y, 2x_1^2 + \epsilon y^p \rangle$ has also the solution $\langle 2ex_1, y, |x_2|, |x_2^2 + 2ey^p| \rangle$. If the two solutions in question were identical we should have $x_2 = \epsilon y, y = 1, 2\epsilon + \epsilon = 3, (2ex_1)^p + 1 = 3^2$, which is impossible for $p > 3$.

This completes the proof of Theorem 1.

Remark 2. By using estimates for linear form in logarithms of algebraic numbers one can drastically improve the bound for p in the case of x even, $(x, y) = 1$. Unfortunately we cannot do it in the case of x odd.

Proof of Theorem 2. If $x^{2p} + y^{2p} = z^2, (x, y) = 1, 2|x$ we infer from Lemma 3 that for some coprime positive integers a, b and an $\epsilon = \pm 1$

\[x^2 = \frac{4ab(a-eb)}{|y|}, \quad 4^{p-1} \left(\frac{ab}{y}\right)^p = (a-eb)^p + \epsilon y^p. \]

Hence $\frac{ab}{|y|} = c^2, (2^{p-1} c)^2 = (a-eb)^p + \epsilon y^p$. By Lemma 1 we have $p|c$; hence $p|x$ and since $8|x^2$, it follows that $4p|x$.

If $2|x$ then $2|y$ and by symmetry $4p|y$.

Remark 3. According to a theorem of Vandiver (see [4], Satz 1046) if $x^p + y^p + z^p = 0$, where $(x, y, z) = 1$ and p is an odd prime then

\[x^p \equiv x \pmod{p^3}, \quad y^p \equiv y \pmod{p^3}, \quad z^p \equiv z \pmod{p^3}. \]

Combining this result with Theorem 2, we get that if $x^{2p} + y^{2p} = z^{2p}$ then $4p^2|x$ or $4p^2|y$ (by a more delicate argument given in [7] even $8p^3|x$ or $8p^3|y$). Unfortunately we have no similar result for the equation $x^{2p} + y^{2p} = z^2$.

Note added in proof. It follows from the Faltings theorem [11] that the equation $x^p + y^{2p} = z^2$ has only finitely many solutions satisfying $(x, y) = 1$ for every given prime $p > 3$.
REFERENCES

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSAWA, POLAND

Reçu par la Rédaction le 20. 07. 1982