ADDENDUM TO
"ČECH AND STEENROD HOMOTOPY THEORY
WITH APPLICATIONS TO GEOMETRIC TOPOLOGY"

BY

HAROLD M. HASTINGS (HEMPSTEAD, NEW YORK)

The proof of Lemma (3.3.32) of Edwards and the author's paper [2] is based on the earlier Lemma (3.3.31) in [2] which is incorrect. In this note* we give a new proof of Lemma (3.3.32) in [2], which allows us to remove one of the conditions in [2], i.e.

CONDITION N3. Every object in C is cofibrant or every object is fibrant, for pro-C to be a closed model category.

Thus, the new proof shows that pro-maps (C) are a closed model category for C being simplicial sets, topological spaces, simplicial groups, etc.

PROPOSITION (Lemma (3.3.32), [2]). Let \(f: X \to Y \) be a trivial fibration and let \(g: Y \to Z \) be a trivial cofibration. Then the composite \(g \circ f \) is a weak equivalence.

Proof. By Proposition (3.3.36) in [2] there is a levelwise trivial cofibration \(g': Y' \to Z' \) (in some \(C' \)) isomorphic to \(g \) (in maps pro-C). By Propositions (3.3.15) and (3.3.26) in [2] (Quillen's [4] Axiom M6 for pro-C and Axiom M6 for fibrations in pro-C), the composite mapping

\[
f': X \xrightarrow{f} Y \xrightarrow{\simeq} Y'
\]

is a trivial fibration. Reindex \(f'([2], Section 2.1, see also Appendix in [1], and [3]) to obtain a level map \(f'': X'' \to Y'' \) in some \(C^K \), where \(K \) is a cofinite, strongly directed set. Extend this new indexing to obtain a sequence

\[
X'' \xrightarrow{f''} Y'' \xrightarrow{g''} Z''
\]

in \(C^K \). Note that \(f'' \) is a trivial fibration in pro-C and \(g'' \) is a levelwise trivial cofibration in \(C^K \). By Proposition (3.2.24) in [2] (Quillen's [4] Axiom M2 for \(C^K \)), \(f \) factors as

\[
X'' \xrightarrow{f} W \xrightarrow{p} Y''
\]

* Partially supported by National Science Foundation, U.S.A., grant MCS 77-01628.

11 — Colloquium Mathematicum XLI.1
For the second claim, consider a commutative solid-arrow diagram

A filler \(\psi \) exists by Proposition (3.3.26) in [2]. Then \(\psi h_1 \) extends \(\bar{\psi} \) and covers \(\varphi \). Use \(H \) to deform \(\psi h_1 \) into the required filler \(\psi' \) as follows: \(\psi' \) is the “1-end” of the filler \(K \) in the diagram.

This completes the proof.

REFERENCES

DEPARTMENT OF MATHEMATICS
HOFSTRA UNIVERSITY
HEMPSTEAD, NEW YORK

Reçu par la Rédaction le 10. 10. 1977