On density concomitants of the covariant curvature tensor in the two- and three-dimensional Riemann space

by L. BIESZK and E. STASIĄK (Szczecin)

1. Introduction. One of the basic questions of the theory of geometric objects is to determine the algebraic concomitants of a certain type for a given object.

In the case $n = 2$ the scalar concomitants of the mixed tensor have been determined by Golab [8] under the supposition that the functions in question are of class C^1. All the scalar concomitants of the mixed tensor in the n-dimensional space have been determined by Aczel and Hosszú [2], while those of the twice covariant tensor in the n-dimensional space were determined by Zajtz in [14].

By means of the analytic method Bieszk [3] has determined for the curvature tensor concomitants being either densities or tensors of second order in the two-dimensional space and linear concomitants being two-times covariant tensors in the three-dimensional space.

The same analytic method, reducing the system of functional equations to the system of differential equations of the first order, has been applied by Bieszk and Wegrzynowski in [5] and [6] to determine densities and vector concomitants of the antisymmetric tensor and linear concomitants of a tensor $T_{αβ}$ in the two-dimensional space.

Scalar concomitants of a tensor $T_{αβ}$ without regularity assumptions in the two-dimensional space were determined by Wegrzynowski in paper [13].

A certain general and uniform method reducing the determination of the concomitants of geometric objects to the question of determining certain special subgroups of the general linear group GL_n was given by Zajtz and Siwek in [12].

In this paper we shall determine by the analytic method all density (scalar) concomitants of the covariant curvature tensor in the two- and three-dimensional Riemann space.

Another method of solving the above-mentioned problem will be given in a forthcoming paper by S. Topa.
2. Density (scalar) concomitants in the two-dimensional space V_2.

First of all we give some general notations. If the passage from one allowable coordinate system (λ) to another (λ') is given by the system of functions

\[\xi^\mu = \varphi^\mu(\xi^\lambda), \quad \lambda = 1, 2, \ldots, n, \quad \lambda' = 1', 2', \ldots, n', \]

where

\[A^\lambda_\mu = \frac{\partial \varphi^\mu(\xi^\lambda)}{\partial \xi^\lambda}, \]

\[J \overset{\text{df}}{=} \det(A^\lambda_\mu) \neq 0, \]

then for the inverse transformation

\[\xi^\lambda = \psi^\lambda(\xi^\mu), \]

we introduce the notation

\[A^\mu_\lambda = \frac{\partial \psi^\lambda(\xi^\mu)}{\partial \xi^\mu}. \]

Between A^λ_μ and A^μ_λ the following relations occur:

\[A^\lambda_\mu = \frac{\text{minor } A^\mu_\lambda}{J}. \]

In a Riemann space V_n the induced connexion is given by means of the Christoffel symbols of second kind

\[\{_{\alpha \beta}^\gamma\} \overset{\text{df}}{=} \frac{1}{2} g^{\nu\sigma}(\partial_\alpha g_{\beta \nu} + \partial_\beta g_{\alpha \nu} - \partial_\gamma g_{\alpha \beta}), \]

where $g^{\alpha \beta}$ is the inverse tensor to the metric tensor $g_{\alpha \beta}$.

The curvature tensor (Riemann–Christoffel tensor) is defined as follows:

\[R^\gamma_{\alpha \beta \nu} \overset{\text{df}}{=} 2\partial_{[\alpha} \{_{\beta \nu]}^\gamma + 2\{_{[\alpha |\nu]}^\gamma \{_{\beta]}^\sigma\}. \]

The so-called covariant curvature tensor is defined by

\[R^\gamma_{\alpha \beta \nu \delta} \overset{\text{df}}{=} R^\gamma_{\alpha \beta \nu} g_{\delta \gamma}. \]

Tensor (9) has the well-known properties

\[1^\circ \quad R^\gamma_{\alpha \beta \nu \delta} = R^\nu_{\alpha \beta \delta}, \]

\[2^\circ \quad R^\gamma_{\alpha \beta \nu \delta} = -R^\nu_{\delta \beta \alpha} = -R^\alpha_{\beta \delta \nu}. \]

The number N of the so-called essential components of the tensor $R^\gamma_{\alpha \beta \nu \delta}$ in space V_n is defined by the formula

\[N = \frac{n^2(n^2 - 1)}{12}, \]

(see [11], 90.9).
After having passed to the new coordinate system \((\lambda')\) the tensor \(R_{\alpha\beta\gamma\delta}\) has the components \(R_{\alpha'\beta'\gamma'\delta'}\) connected with \(R_{\alpha\beta\gamma\delta}\) by the formula
\[
R_{\alpha'\beta'\gamma'\delta'} = A_{\alpha'}^\alpha A_{\beta'}^\beta A_{\gamma'}^\gamma A_{\delta'}^\delta R_{\alpha\beta\gamma\delta}.
\]
(12)

Let us proceed to determine the density concomitants of \(R_{\alpha\beta\gamma\delta}\) in the two-dimensional Riemann space.

For \(n = 2, N = 1\), i.e. \(R_{\alpha\beta\gamma\delta}\) has only one essential component
\[
x = R_{1212}.
\]
(13)

For the matrix \(A_{\alpha'}^\alpha\), we introduce the shorter notation
\[
\begin{bmatrix}
p_1 & p_2 \\
p_3 & p_4
\end{bmatrix}
\overset{dt}{\to}
\begin{bmatrix}
A_{1'}^{1} & A_{1'}^{2} \\
A_{2'}^{1} & A_{2'}^{2}
\end{bmatrix}.
\]
(14)

Hence we have
\[
J = (p_1 p_4 - p_2 p_3)^{-1},
\]
and according to [11] (formula 92.1)
\[
x' = R_{1'2'12'} = (p_1 p_4 - p_2 p_3)^2 x,
\]
or more briefly
\[
x' = J^{-2} x.
\]
(15)

We seek an algebraic concomitant \(H\) of \(R_{\alpha\beta\gamma\delta}\), which is a density of weight \((-r)\).

For \(n = 2\), \(H\) is a function of \(x\) fulfilling the equation
\[
H(x') = \varepsilon |J|^r H(x)
\]
or
\[
H[(p_1 p_4 - p_2 p_3)^2 x] = \varepsilon |J|^r H(x),
\]
where
\[
\varepsilon = \begin{cases}
1 & \text{for a Weyl density}, \\
\text{sgn} J & \text{for an ordinary density}.
\end{cases}
\]
(19)

Assuming that \(H(x)\) is of class \(C^1\), we reduce equation (17) to an ordinary differential one. We differentiate (18) with respect to \(p_1, p_2, p_3, p_4\) and next substitute
\[
p_1 = p_4 = 1, \quad p_2 = p_3 = 0.
\]
(20)

After this operation we get four equations reducing to
\[
2x H'(x) = -r H(x),
\]
in which there is no intervention of \(\varepsilon\).

We have to distinguish two cases, I and II.
I. Let us assume that \(r = 0 \).

Ia. If \(x = 0 \), the problem is trivial, because \(R_{1213} = 0 \) in every coordinate system.

Ib. If \(x \neq 0 \), then \(H'(x) = 0 \); hence \(H(x) = \text{const} \) and in this case only arbitrary scalars could be concomitants of the tensor \(R_{1213} \).

II. Let us assume that \(r \neq 0 \).

IIa. If \(x = 0 \), then we have again the trivial case.

IIb. If \(x \neq 0 \), then the general solution of (21) has the form

\[
H = \begin{cases}
C_1 |x|^{-r/2} & \text{for } x > 0, \\
C_2 |x|^{-r/2} & \text{for } x < 0,
\end{cases}
\]

where \(C_1, C_2 \) are arbitrary constants different from zero (different or equal).

It is easy to prove that if \(\varepsilon = 1 \), \(H(x) \) defined by (22) fulfills (17), while for \(\varepsilon = \text{sgn} x \), formula (22) is no solution of (17) in the whole domain but for \(x > 0 \) only.

Now we can state

Theorem 1. In the space \(V_2 \) the only scalar concomitants (of the class \(C^1 \)) of the tensor \(R_{abyc} \) are arbitrary scalars, while the only density concomitants of the weight \(-r\) are Weyl-densities of the form

\[
H(x) = C |x|^{-r/2},
\]

where the arbitrary constant \(C \) different from zero is given by

\[
C = \begin{cases}
C_1 & \text{for } x > 0, \\
C_2 & \text{for } x < 0.
\end{cases}
\]

3. Density (scalar) concomitants in the Riemann space \(V_3 \). In accordance with (11) (Section 2) we have for \(n = 3, N = 6 \). We introduce the following shorter notations for the six essential components of the tensor \(R_{abyc} \):

\[
\begin{align*}
x_1 &= R_{1212}, & x_2 &= R_{1313}, & x_3 &= R_{2323}, \\
x_4 &= R_{1213}, & x_5 &= E_{1223}, & x_6 &= R_{1323}
\end{align*}
\]

and the shorter ones for the elements of the matrix \(A^j_i \):

\[
[a_{ij}] = \begin{bmatrix} A^j_i \end{bmatrix}, \quad \text{where } i, j = 1, 2, 3;
\]

\[
J = \det(a_{ij}) \neq 0.
\]

In accordance with (6) (Section 2) and (2) we have

\[
[A^j_i] = J^{-1} \begin{bmatrix} a_{12}a_{53} - a_{23}a_{22} & a_{23}a_{21} - a_{21}a_{33} & a_{21}a_{32} - a_{22}a_{31} \\
a_{13}a_{43} - a_{12}a_{33} & a_{11}a_{33} - a_{13}a_{31} & a_{12}a_{31} - a_{11}a_{32} \\
a_{12}a_{33} - a_{13}a_{22} & a_{13}a_{21} - a_{11}a_{23} & a_{11}a_{22} - a_{12}a_{21}
\end{bmatrix}.
\]
In the new coordinate system \((\lambda')\) the coordinates \(x'_{i} (i = 1, 2, 3, 4, 5, 6)\) of the tensor \(R_{\alpha\beta\gamma\delta}\) have the following form:

\[
\begin{align*}
x'_{1} &= J^{-2}[a_{33}^{2} x_{1} + a_{23}^{2} x_{2} + a_{13}^{2} x_{3} - 2a_{23} a_{33} x_{4} + 2a_{13} a_{33} x_{5} - 2a_{13} a_{23} x_{6}], \\
x'_{2} &= J^{-2}[a_{31}^{2} x_{1} + a_{21}^{2} x_{2} + a_{11}^{2} x_{3} - 2a_{21} a_{31} x_{4} + 2a_{11} a_{31} x_{5} - 2a_{11} a_{21} x_{6}], \\
x'_{3} &= J^{-2}[a_{31}^{2} x_{1} + a_{21}^{2} x_{2} + a_{11}^{2} x_{3} - 2a_{21} a_{31} x_{4} + 2a_{11} a_{31} x_{5} - 2a_{11} a_{21} x_{6}], \\
x'_{4} &= J^{-2}[-a_{32} a_{33} x_{1} - a_{22} a_{33} x_{2} - a_{12} a_{13} x_{3} + (a_{22} a_{33} + a_{23} a_{32}) x_{4}], \\
x'_{5} &= J^{-2}[-a_{12} a_{33} + a_{13} a_{32}) x_{5} + (a_{12} a_{23} + a_{13} a_{22}) x_{6}], \\
x'_{6} &= J^{-2}[-a_{12} a_{33} + a_{13} a_{32}) x_{5} + (a_{12} a_{23} + a_{13} a_{22}) x_{6}],
\end{align*}
\]

(5)

Similarly to Section 2 the sought density \(H\) is a function of \(x_{1}, \ldots, x_{6}\) fulfilling the functional equation:

\[
H(x'_{1}, \ldots, x'_{6}) = \varepsilon |J|^{r} H(x_{1}, \ldots, x_{6}),
\]

(6)

where

\[
\varepsilon = \begin{cases}
1 & \text{for a Weyl density}, \\
\text{sgn} J & \text{for an ordinary density}.
\end{cases}
\]

(7)

Let us assume that \(H(x_{1}, \ldots, x_{6})\) is of class \(C^{1}\). For simplicity we introduce the following notation:

\[
H_{i} = \frac{\partial H}{\partial x_{i}}, \quad i = 1, 2, \ldots, 6.
\]

(8)

First we differentiate the functional equation (6) with respect to the parameters \(a_{ij}, i, j = 1, 2, 3\), and next we substitute

\[
[a_{ij}] = [\delta_{ij}],
\]

(9)

where \(\delta_{ij}\) is the Kronecker delta.

Then we get a system of nine equations of the first order with one unknown function \(H\) depending on six variables \(x_{i}, i = 1, \ldots, 6:\)

\[
\begin{align*}
2x_{1} H_{1} + 2x_{2} H_{2} + 2x_{3} H_{3} + x_{4} H_{4} + x_{5} H_{5} + x_{6} H_{6} &= -rH, \\
2x_{1} H_{1} + 2x_{2} H_{2} + 2x_{3} H_{3} + x_{4} H_{4} + x_{5} H_{5} + x_{6} H_{6} &= -rH, \\
2x_{2} H_{2} + 2x_{3} H_{3} + x_{4} H_{4} + x_{5} H_{5} + 2x_{6} H_{6} &= -rH, \\
2x_{3} H_{3} + x_{4} H_{4} + x_{5} H_{5} + 2x_{6} H_{6} &= 0, \\
2x_{5} H_{5} + x_{6} H_{6} &= 0,
\end{align*}
\]

(10)

\[
\begin{align*}
2x_{6} H_{6} &= 0, \\
2x_{6} H_{6} + x_{2} H_{2} + x_{3} H_{3} &= 0, \\
2x_{6} H_{6} + x_{4} H_{4} + x_{5} H_{5} &= 0, \\
2x_{6} H_{6} + x_{2} H_{2} + x_{3} H_{3} &= 0, \\
2x_{6} H_{6} + x_{4} H_{4} + x_{5} H_{5} &= 0, \\
2x_{6} H_{6} + x_{2} H_{2} + x_{3} H_{3} &= 0, \\
2x_{6} H_{6} + x_{4} H_{4} + x_{5} H_{5} &= 0, \\
2x_{6} H_{6} + x_{2} H_{2} + x_{3} H_{3} &= 0, \\
2x_{6} H_{6} + x_{4} H_{4} + x_{5} H_{5} &= 0.
\end{align*}
\]
We assert that (10) is a complete system. Denoting the left-hand sides of (10) by \(X_1, X_2, \ldots, X_9 \) respectively, we have

\[
X_i(H) = \sum_{k=1}^{6} a_{ik} H_k, \quad i = 1, 2, \ldots, 9,
\]

where the coefficients \(a_{ik} \) are certain simple functions of \(x_1, \ldots, x_4 \).

Let us introduce a shorter notation for Poisson brackets:

\[
(X_i, X_j) = \sum_{k=1}^{6} [X_i(a_{jk}) - X_j(a_{ik})] H_k, \quad i < j, i, j = 1, 2, \ldots, 9.
\]

After a number of simple operations based on (10), (11) and (12) we get

\[
(X_1, X_2) = 0, \quad (X_2, X_3) = 0, \quad (X_3, X_6) = X_8,
\]

\[
(X_1, X_3) = 0, \quad (X_2, X_4) = X_4, \quad (X_3, X_4) = 0,
\]

\[
(X_1, X_4) = -X_4, \quad (X_2, X_5) = 0, \quad (X_3, X_7) = X_7,
\]

\[
(X_1, X_5) = -X_5, \quad (X_2, X_6) = 0, \quad (X_3, X_8) = -X_8,
\]

\[
(X_1, X_6) = X_6, \quad (X_2, X_7) = X_7, \quad (X_3, X_9) = -X_9,
\]

\[
(X_1, X_7) = 0, \quad (X_2, X_8) = 0, \quad (X_4, X_8) = 0,
\]

\[
(X_1, X_8) = X_8, \quad (X_2, X_9) = X_9, \quad (X_4, X_9) = X_2 - X_1,
\]

\[
(X_1, X_9) = 0, \quad (X_3, X_4) = 0, \quad (X_4, X_7) = X_5,
\]

\[
(X_4, X_9) = -X_9, \quad (X_5, X_8) = X_3 - X_1, \quad (X_8, X_9) = X_8,
\]

\[
(X_4, X_9) = 0, \quad (X_5, X_9) = X_4, \quad (X_7, X_8) = X_6,
\]

\[
(X_5, X_9) = -X_7, \quad (X_6, X_7) = 0, \quad (X_7, X_9) = X_3 - X_2,
\]

\[
(X_5, X_7) = 0, \quad (X_6, X_8) = 0, \quad (X_8, X_9) = 0,
\]

from which it follows that (10) is a complete system.

For integrating complete systems of the type (10) it is convenient to find a so-called integrating direction ([15] or [10]).

Denoting the equations of the system (10) by (10.1)-(10.9), we shall integrate them in the following direction: (10.7), (10.5), (10.6), (10.8), (10.9), (10.4), (10.1), (10.2), (10.3).

To equation (10.7) corresponds the system of the ordinary equations:

\[
\frac{dx_1}{2x_4} = \frac{dx_2}{0} = \frac{dx_3}{0} = \frac{dx_4}{x_2} = \frac{dx_5}{x_6} = \frac{dx_6}{0}.
\]

Solving this system, we obtain

\[
H = \varphi(x_2, x_3, x_6, x_4^2 - x_1 x_2, x_4 x_6 - x_2 x_6) = \varphi(y_1, \ldots, y_6),
\]

where \(\varphi \in C^1 \).
Substituting solution (15) in equation (10.5) we get

\[\frac{dy_1}{0} = \frac{dy_2}{0} = \frac{dy_3}{0} = \frac{dy_4}{2y_5} = \frac{dy_5}{y_5^2 - y_1y_2}. \]

Hence, by the assumption that \(y_5^2 - y_1y_2 \neq 0 \), we have

\[H = \psi[x_2, x_3, x_6, x_2(x_1x_6^2 + x_2x_6^2 + x_3x_6^2 - x_1x_2x_3 - 2x_4x_5x_6)] \]
\[= \psi(z_1, z_2, z_3, z_4), \]

where \(\psi \in C^1 \).

Substituting solution (17) in equation (10.6) we get the system of equations

\[\frac{dz_1}{0} = \frac{dz_2}{2z_3} = \frac{dz_3}{z_1} = \frac{dz_4}{0}. \]

The solution of (18) is

\[H = \theta[x_2, x_6^2 - x_2x_3, x_2(x_1x_6^2 + x_2x_6^2 + x_3x_6^2 - x_1x_2x_3 - 2x_4x_5x_6)] \]
\[= \theta(u_1, u_2, u_3), \]

where \(\theta \in C^1 \).

Substituting solution (19) in equation (10.8) we get

\[(x_4x_6 - x_2x_5) \theta_2 = 0, \]

hence, by assuming that \(x_4x_6 - x_2x_5 \neq 0 \), we receive

\[\theta_2 = 0, \]

so

\[H = \omega[x_2, x_2(x_1x_6^2 + x_2x_6^2 + x_3x_6^2 - x_1x_2x_3 - 2x_4x_5x_6)] \]
\[= \omega(v_1, v_2), \quad \omega \in C^1. \]

Substituting solution (21) in equation (10.9) we get

\[\frac{dv_1}{v_1} = \frac{dv_2}{v_2}. \]

The solution of (22) has the form

\[H = \kappa(x_1x_2x_3 + 2x_4x_5x_6 - x_2x_5^2 - x_1x_2^2 - x_3x_4^2) = \kappa(w), \]

where \(\kappa(w) \in C^1 \).

Solution (23) can be rewritten in the form

\[H = \kappa(w) = \kappa \begin{pmatrix} x_1 & x_4 & x_6 \\ x_4 & x_2 & x_6 \\ x_6 & x_4 & x_3 \end{pmatrix}. \]

Substituting solution (23) in equation (10.4) we obtain an identity,
and thus equation (10.4) is not independent of the previously integrated equations.

Substituting solution (24) in (10.1) we have

\(4x'(w)w = -r x(w). \)

Solving the homogeneous equation (25) we obtain (similarly to the equation (21), Section 2)

\(H = C |w|^{-r/4}, \quad r - \text{arbitrary}, \ w \neq 0, \)

where the integration constant \(C \neq 0 \) has the form

\[C = \begin{cases}
 C_1 & \text{for } w > 0, \\
 C_2 & \text{for } w < 0,
\end{cases} \]

and

\(w = \begin{vmatrix}
 x_1 & x_4 & x_5 \\
 x_4 & x_2 & x_6 \\
 x_5 & x_6 & x_3
\end{vmatrix}. \)

We verify without difficulty that solution (25) fulfils equations (10.2) and (10.3).

We also verify that the symmetric determinant (28), formed from the essential components (1) of the tensor \(R_{a\beta\gamma\delta} \), is a Weyl density of weight (4), i.e. denoting by \(w' \) the right-hand side of (28) for \(x_\nu, i = 1, 2, \ldots, 6 \) of the form (5) we obtain (after tedious calculations)

\[w' = J^{-4}w. \]

The results of Section 3 can now be formulated as follows:

Theorem 2. In the space \(V_3 \) each scalar concomitant \(H(x_1, \ldots, x_6) \) (of class \(C^1 \)) of the curvature tensor \(R_{a\beta\gamma\delta} \) is a constant function \(H(x_1, \ldots, x_6) = C \), while every density concomitant of weight \(-r\) is a Weyl density of the form

\[H(x_1, \ldots, x_6) = C |w|^{-r/4}, \quad C \neq 0, \ w \neq 0, \]

where \(w \) is defined by (28) and \(C \) by (27).

Remark 1. The above considerations have only been based on the symmetry and antisymmetry of tensor \(R_{a\beta\gamma\delta} \) but we have ignored the fact that \(R_{a\beta\gamma\delta} \) as a curvature tensor comes from the metric tensor \(g_{a\beta} \). The whole consideration is maintained if we assume that the tensor \(R_{a\beta\gamma\delta} \) has only properties (10) and is independent of the tensor \(g_{a\beta} \), i.e. the assumption that the space is Riemannian is not necessary.

Remark 2. The concomitant defined by formula (28) being an algebraic concomitant of the tensor \(R_{a\beta\gamma\delta} \), it can be called a differential
Covariant curvature tensor

concomitant of the second order of the metric tensor \(g_{\alpha \beta} \) (because \(R_{\alpha \beta \gamma} \) are expressed by \(g_{\alpha \beta}, \partial_\gamma g_{\alpha \beta}, \partial_\beta g_{\alpha \gamma} \)). However, there are other algebraic concomitants of the tensor \(g \), which are densities. The simplest of those is \(\det(g_{\alpha \beta}) \), another one (for \(n = 3 \)) is a symmetric determinant of the third order formed from the essential components of the tensor

\[
G_{\alpha \beta \gamma} = 2 \frac{\partial}{\partial t} g_{[\alpha \gamma]} g_{\beta \beta'},
\]

i.e. from the minors of the second order of \(\det(g_{\alpha \beta}) \). The tensor \(G_{\alpha \beta \gamma} \) of the form (31) is the so-called induced metric tensor of the bivector space \(V_2^n \), occurring in paper [8].

References

[3] L. Bieszk, O komitantach algebraicznych tensora krzywejnego \(R^\alpha_{\beta \gamma} \), w przestrzeniach dwuwymiarowych, i trójwymiarowych, wyjściowych z koniecznością afiniczną (unpublished).
[5] — — O komitantach algebraicznych liniowych tensora \(T^\alpha_{\beta \gamma} \) w przestrzeni dwuwymiarowej, ibidem 80 (1967), p. 105-111.

Reçu par la Rédaction le 8. 2. 1971