OPERATOR SEMI-STABLE PROBABILITY MEASURES
ON BANACH SPACES

BY

W. KRAKOWIAK (WROCŁAW)

In this paper we define operator semi-stable probability measures on a real separable Banach space which are identified as limit laws. Further, we get a representation of the characteristic functionals of operator semi-stable probability measures.

1. Notation and preliminaries. Let X denote a real separable Banach space with norm $\| \cdot \|$ and with dual space X^*. By $\langle \cdot, \cdot \rangle$ we denote the dual pairing between X and X^*. Further, $B(X)$ will denote the algebra of continuous linear operators on X with norm topology. Given a subset F of $B(X)$, we denote by $\text{Sem}(F)$ the closed multiplicative semigroup of operators spanned by F. The unit and zero operators will be denoted by I and 0, respectively.

A sequence $\{\mu_n\}$ of probability measures on X is said to converge to a probability measure μ on X if for every bounded continuous real-valued function f on X

$$\int_X fd\mu_n \rightarrow \int_X fd\mu.$$

The characteristic functional of μ is defined on X^* by

$$\mu(y) = \int_X e^{i\langle x,y \rangle} \mu(dx),$$

where $y \in X^*$. For an operator A from $B(X)$ and a probability measure μ on X let A denote the probability measure defined by $A\mu(E) = \mu(A^{-1}(E))$ for all Borel subsets E of X. It is easy to check the equations

$$A(\mu \ast \nu) = A\mu \ast A\nu, \quad A\mu(y) = \hat{\mu}(A^*y),$$

where A^* denotes the adjoint operator. Moreover, $A_n\mu_n \rightarrow A\mu$ whenever $A_n \rightarrow A$ and $\mu_n \rightarrow \mu$. A probability measure μ on X is said to be full if
its support is not contained in any proper hyperplane of X. By $\delta_x (x \in X)$
we denote the probability measure concentrated at the point x.

A probability measure μ on X is said to be infinitely divisible whenever
for every positive integer n there exists a probability measure μ_n such that
$\mu = \mu_n^n$, where the power is taken in the sense of convolution. Let μ
be an infinitely divisible probability measure on X. Then for every $\sigma \geq 0$
there exists an infinitely divisible measure ν on X such that $\hat{\nu}(y) = [\mu(y)]^\sigma$.
We denote ν by μ^σ. The set $\{\mu^\sigma\}_{\sigma \geq 0}$ is an Abelian semigroup with the con-
volution as a semigroup operation, and the mapping $\sigma \rightarrow \mu^\sigma$ is a continuous
homomorphism of the additive semigroup of non-negative real numbers
onto $\{\mu^\sigma\}_{\sigma \geq 0}$ (Proposition 1.2 of [8]).

Lemma 1. Let μ and ν be probability measures on X and let $\{x_n\}$ be
a sequence of elements of X such that

$$
\lim_{n \to \infty} \exp(i \langle x_n, y \rangle) = \hat{\nu}(y) \quad \text{for all } y \in X^*.
$$

Then there exists a unique element $x \in X$ such that $\mu = \delta_x * \nu$.

The lemma follows immediately from Lemma 1.1 of [8].

Given a probability measure μ on X, we define $\bar{\mu}$ by $\bar{\mu}(E) = \mu(-E)$,
where $-E = \{-x: x \in E\}$. For any probability measure μ on X the measure $|\mu|^2 = \mu * \bar{\mu}$ is called the symmetrization of μ.

Let $[a]$ be the largest integer not greater than a.

2. **Stating the problem.** Let μ be a probability measure on X. We call μ
operator semi-stable if its characteristic functional $\hat{\mu}$ satisfies the functional
equation

$$(2.1) \quad [\hat{\mu}(y)]^\sigma = \hat{\mu}(B^*y)e^{\langle b, y \rangle} \quad \text{for all } y \in X^*,
$$

where $B \in B(X)$, $b \in X$ and $\sigma \in (0, 1)$. In the one-dimensional case, characteristic functionals which satisfy for all x an equation of the form

$$
\varphi(x) = [\varphi(bx)]^\sigma,
$$

where $a > 0$ and $0 < b < 1$, have been considered by Lévy ([11], p. 204)
and the solutions have been called by him semi-stable. Semi-stable measures
on the real line have been studied by Kruglov in [9], by Pillai in [13]
and by Rao and Ramachandran in [14]. Operator semi-stable measures
on finite-dimensional spaces have been considered by Jajte in [6]. Kumar
[10] has treated semi-stable measures on Hilbert spaces and proved that
they are limit laws. We obtained a representation of the characteristic
functionals of these laws in the same manner as Jajte did in [5] for stable
probability measures.

Proposition 1. Every operator semi-stable measure on X is infinitely
divisible.
Proof. Let N be a collection of closed subspaces of X with finite codimension and let $p_N: X \to X/N$, $N \in N$, be canonical maps.

Let μ be an operator semi-stable measure on X such that

$$\hat{\mu}(y) = \mu(B^*y)e^{i\theta(y)}$$

for all $y \in X^*$,

where $B \in B(X)$, $b \in X$ and $c \in (0, 1)$.

Let $\nu = |\mu|^2$ and $N \in N$. We have

$$\hat{\nu}(y) = \left[\hat{\nu}(B^*y)^{1/e_k}\right]^{1/e_k}$$

(y \in X^*)

and

$$\hat{\nu}(\pi_N y) = \left[\hat{\nu}(B^*y^{\pi_N y})^{1/e_k}\right]^{1/e_k}$$

(y \in (X/N)^*)

for $k = 1, 2, \ldots$ Let $n_k = [e^{-k}]$ and $y \in (X/N)^*$. If $\hat{\nu}(\pi_N y) = 0$, then $\hat{\nu}(B^*y^{\pi_N y}) = 0$ for $k = 1, 2, \ldots$

Let $\hat{\nu}(\pi_N y) \neq 0$. Since

$$\left|\hat{\nu}(\pi_N y) - \hat{\nu}(B^*y^{\pi_N y})^{1/e_k}\right|^{1/e_k} \leq \left|\hat{\nu}(B^*y^{\pi_N y})^{1/e_k} - 1\right|$$

$$= 1 - \nu(B^*y^{\pi_N y})^{e_k(e^{-k} - e^{-k})} = 1 - \nu(B^*y^{\pi_N y})^{1 - e_k(e^{-k} - e^{-k})},$$

$\hat{\nu}(B^*y^{\pi_N y})$ converges to $\nu(\pi_N y)$. Thus $\pi_N B^k(y)^{\pi_N y} \to \nu$. Hence $\pi_N \nu$ is an infinitely divisible measure and $\hat{\mu}(y) \neq 0$ for all $y \in X^*$.

We have

$$\mu(y) = \left[\mu(B^*y)^{1/e_k}\right]^{1/e_k}\exp\left(i \frac{1}{e_k} \langle a_k, y \rangle\right)$$

for all $y \in X^*$,

where

$$a_k = e^k \sum_{j=1}^{k} \frac{1}{e^j} B^j b \quad (B^0 = I), k = 1, 2, \ldots$$

If $N \in N$, then

$$\hat{\mu}(\pi_N y) = \left[\hat{\mu}(B^*y^{\pi_N y})^{1/e_k}\right]^{1/e_k}\exp\left(i \frac{1}{e_k} \langle \pi_N a_k, y \rangle\right)$$

for $y \in (X/N)^*$.

Since

$$|\hat{\mu}(\pi_N y) - \hat{\mu}(B^*y^{\pi_N y})|^{1/e_k} \exp\left(i \langle n_k \pi_N a_k, y \rangle\right)$$

$$\leq \left|\left|\hat{\mu}(B^*y^{\pi_N y})\exp\left(i \langle \pi_N a_k, y \rangle\right)\right|^{e_k^{-k} - e_k^{-k}} - 1\right|$$

$$= \left|\hat{\mu}(\pi_N y)^{e_k} - 1\right| = \left|\hat{\mu}(\pi_N y)^{1 - e_k(e^{-k} - e^{-k})} - 1\right|,$$

$$\left|\hat{\mu}(B^*y^{\pi_N y})\exp\left(i \langle n_k \pi_N a_k, y \rangle\right)\right|$$

converges to $\hat{\mu}(\pi_N y)$ for every $y \in (X/N)^*$. Thus

$$\pi_N B^k \mu^{\pi_N y} \to \pi_N \mu$$

and $\pi_N \mu$ is infinitely divisible for all $N \in N$. By Theorem 1.1.9 of [3], μ is infinitely divisible. This completes the proof of the proposition.
3. Characterization of operator semi-stable measures. The following theorem proves that operator semi-stable probability measures on X are limit laws.

Theorem 1. A probability measure μ on X is an operator semi-stable measure if and only if there exist a probability measure ν on X, an operator $B \in B(X)$, sequences $\{a_k\}$ and $\{n_k\}$ of elements of X and of positive integers, respectively, such that, for certain $c \in (0, 1)$,

$$(3.1) \quad \lim_{k \to \infty} \frac{n_k}{n_{k+1}} = c$$

and

$$(3.2) \quad B^k \mu^{n_k} \delta_{a_k} \to \mu.$$

Proof. Necessity. Suppose that μ is an operator semi-stable measure and

$$[\hat{\mu}(y)]^e = \hat{\mu}(B^* y) e^{i(b, y)} \quad \text{for all } y \in X^e,$$

where $B \in B(X)$, $c \in (0, 1)$ and $b \in X$.

Let

$$n_k = [c^{-k}] \quad \text{and} \quad a_k = c^k \sum_{j=1}^{k} \frac{1}{c^j} B^j B^{-1} b \quad (B^0 = I).$$

We have

$$\lim_{n \to \infty} \frac{n_k}{n_{k+1}} = c.$$

Since

$$(3.3) \quad \hat{\mu}(y) = [\hat{\mu}((B^*)^k y)]^{1/c^k} \exp \left(\frac{1}{c^k} \langle a_k, y \rangle \right)$$

$$= [\hat{\mu}((B^*)^k y)]^{1/c^k} \exp \left(i \langle n_k a_k, y \rangle \right) [\hat{\mu}((B^*)^k y)]^{1/c^k - n_k},$$

the sequence $\{B_k \mu^{n_k} \delta_{n_k a_k}\}$ is shift compact (Theorem 3.2.2 of [12]).

By Lemma 1.2.4 of [3] we show that

$$(3.4) \quad \lim_{k \to \infty} \sup_{y \in U_r} |B_k \mu^{n_k} \delta_{n_k a_k}(y) - \mu(y)| = 0 \quad \text{for all } r > 0,$$

where $U_r = \{x \in X : \|x\| \leq r\}$ and $U_r^c = \{y \in X : \langle x, y \rangle \leq 1 \text{ for all } x \in U_r\}$.

We have

$$|\hat{\mu}(y) - B^k \mu^{n_k} \delta_{n_k a_k}(y)| \leq |\hat{\mu}((B^*)^k y) \exp(i \langle a_k, y \rangle)|^{c^k - [c^{-k}] - 1}$$

$$= |[\mu^{c^k}(y)]^{c^k - [c^{-k}] - 1} - 1| = |[\hat{\mu}(y)]^{c^k - [c^{-k}] - 1} - 1|.$$

By $\mu^{1 - c^k [c^{-k}]} \to \delta_0$ (Proposition 1.2 of [8]) and by Lemma 1.2.3 of [3], condition (3.4) holds. Thus the sequence $\{B_k \mu^{n_k} \delta_{n_k a_k}\}$ converges to μ.

Sufficiency. Assume that there exist a probability measure \(\nu \) on \(X \), an operator \(B \in B(X) \), sequences \(\{a_k\} \) and \(\{n_k\} \) of elements of \(X \) and of positive integers, respectively, such that (3.1) and (3.2) hold. Further, the sequence

\[
\left\{ \hat{\nu} (B^* (B^*)^k y) \right\} \exp \left(\left(\frac{n_k}{n_{k+1}} a_{k+1} - B a_k, y \right) \right) \exp \left(i \left(\frac{n_k}{n_{k+1}} a_{k+1} - B a_k, y \right) \right)
\]

converges to \([\hat{\mu} (y)]^c \) for all \(y \in X^* \). By (3.2) we have

\[
B(B^* \nu^{n_k} \delta_{a_k}) \to B \mu.
\]

Clearly,

\[
\hat{\mu}(B^* y) \exp \left(i \left(\frac{n_k}{n_{k+1}} a_{k+1} - B a_k, y \right) \right) \to [\hat{\mu} (y)]^c \quad \text{for all } y \in X^*.
\]

By Lemma 1 there exists a \(b \in X \) such that \(\mu^c = B \mu^c \delta_b \), which completes the proof of the theorem.

Given a probability measure \(\mu \) on \(X \), we denote by \(C_p(\mu) \) \((0 < p < \infty)\) the subset of \(B(X) \) consisting of all invertible operators \(A \) with the property \([\hat{\mu} (y)]^p = A \mu^c \delta_a (y) \) for all \(y \in X^* \) and certain \(a \in X \). Let

\[
C(\mu) = \{ p \in (0, \infty) : C_p(\mu) \neq \emptyset \}.
\]

It is clear that if \(C(\mu) \neq \{1\} \), then \(\mu \) is an operator semi-stable measure.

Proposition 2. Let \(\mu \) be a probability measure with \(C(\mu) \neq \{1\} \). Then either \(C(\mu) = \{ s^n : n \in \mathbb{Z} \} \) for certain \(s \in (0, 1) \) or the set \(C(\mu) \) is dense in \((0, \infty)\).

Proof. We assume that \(\sup C(\mu) \cap (0, 1) = s < 1 \). Suppose that \(C_s = \emptyset \). Then there exist \(p, q \in C(\mu) \cap (0, 1) \) such that \(s^2 < p < q < s \).

Further, we get \(s < p/q < 1 \) and \(C^{p/q-1} \neq \emptyset \), which contradicts the assumption that \(s \) is the supremum of \(C(\mu) \cap (0, 1) \). Suppose now that \(C(\mu) \neq \{ s^n : n \in \mathbb{Z} \} \). Then there exists an \(r \in C(\mu) \cap (0, s) \) such that \(r \neq s^n \)

for \(n = 1, 2, \ldots \). For some positive integer \(n_0 \) we have \(s^{n_0+1} < r < s^{n_0} \).

Hence \(s < r/s^{n_0} < 1 \) and \(C_{r/s^{n_0}} \neq \emptyset \), which contradicts the assumption that \(s \) is the supremum of \(C(\mu) \cap (0, 1) \). The proposition is proved.

Theorem 2. Let \(\mu \) be a full probability measure on \(X \). Then there exists an operator \(B \in B(X) \) with

\[
\lim_{t \to 0} \exp (B \log t) = 0
\]

such that

\[
\mu^t = \exp (B \log t) \mu \delta b_0
\]

for all \(t > 0 \),

where \(b_0 \in X \), if and only if there exist sequences \(\{ B_n \} \) and \(\{ c_n \} \) of operators of the algebra \(B(X) \) and of real numbers of \((0, 1)\), respectively, such that
Sem($\{B_n : n = 1, 2, \ldots\}$) is compact in the norm topology of $B(X)$, $c_n \to 1$ and

$$\mu^n = B_n \mu \ast \delta_{b_n} \quad \text{for } n = 1, 2, \ldots \text{ and } b_n \in X.$$

The theorem follows immediately from Theorem 3.1 of [8].

4. Representation of operator semi-stable measures. For the theory of infinitely divisible probability measures on Banach spaces and even on more general algebraic structures we refer to [15] and [3]. In particular, if F is any bounded non-negative Borel measure, then $e(F)$ is defined as

$$e(F) = e^{-F(X)} \sum_{k=0}^{\infty} \frac{1}{k!} F^{*k}, \quad \text{where } F^{*0} = \delta_0.$$

The measure F is called a Poisson exponent of $e(F)$. Let M be a not necessarily bounded Borel measure on X vanishing at 0. If there exists a representation $M = \sup F_n$, where F_n are bounded and the sequence \{e(F_n)\} of associated Poisson measures is shift compact, then each cluster point of the sequence \{e(F_n) \ast \delta_{x_n}\} ($x_n \in X$) is called a generalized Poisson measure and is denoted by $\tilde{\delta}(M)$. Clearly, $\tilde{\delta}(M)$ is uniquely determined up to translation, i.e. for two cluster points, say μ_1 and μ_2, of \{e(F_n) \ast \delta_{x_n}\} and \{e(F_n) \ast \delta_{y_n}\}, respectively, we have $\mu_1 = \mu_2 \ast \delta_x$ for certain $x \in X$ ([15], p. 313). Further, the measure M is called a generalized Poisson exponent of $\tilde{\delta}(M)$. Let $M(X)$ denote the set of all generalized Poisson exponents of X.

By a Gaussian measure on X we mean a probability measure ϱ on X such that for every $y \in X^*$ the measure ϱ_y induced on the real line is Gaussian. In this paper we consider only symmetric Gaussian measures. For such measures the characteristic functional is of the form

$$\hat{\varrho}(y) = \exp \left(-\frac{1}{2} \langle y, Ry \rangle \right) \quad (y \in X^*),$$

where R is the covariance operator, i.e. a compact operator from X^* into X with the properties $\langle y_1, Ry_2 \rangle = \langle y_2, Ry_1 \rangle$ for all $y_1, y_2 \in X^*$ (symmetry) and $\langle y, Ry \rangle \geq 0$ (non-negativity) (see [17], p. 136, and [2]). By $R(X)$ we denote the set of all covariance operators of Gaussian measures on X.

Tortrat proved in [15] (see also [3]), the following analogue of the Lévy-Khinchine representation of infinitely divisible laws: each infinitely divisible measure μ on X has a unique representation $\mu = o \ast \tilde{\delta}(M)$, where o is a symmetric Gaussian measure on X and $M \in M(X)$.

Proposition 3. Let $B \in B(X)$. Then a probability measure μ on X is operator semi-stable with $\mu^c = B\mu \ast \delta_b$ for some $c \in (0, 1)$ and $b \in X$ if
and only if \(\mu = \varphi \ast \delta(M) \), where \(\varphi \) is a symmetric Gaussian measure with the covariance operator \(R \) and \(M \in M(X) \) such that \(cM = BM \) and \(cR = BRB^* \).

The proof is trivial.

Corollary 1. Let \(B \in B(X) \) and let \(\mu \) be an operator semi-stable probability measure on \(X \) with \(\mu^c = B\mu \ast \delta_b \) for some \(c \in (0, 1) \) and \(b \in X \). If \(\mu = \varphi \ast \delta(M) \), where \(\varphi \) is a symmetric Gaussian measure and \(M = M(X) \), then \(\varphi \) and \(M \) are concentrated on subspaces \(X_1 \) and \(X_2 \), respectively, which are invariant under \(B \).

Let \(B \) be an invertible operator from \(B(X) \) with

\[
\lim_{n \to +\infty} B^n = 0.
\]

Given a subset \(E \) of \(X \), we put \(\tau(B) = \{ B^n x : x \in E, n \in \mathbb{Z} \} \). It is clear that for any compact set with the property \(0 \notin E \) and for any pair \(r_1, r_2 \) \((r_1 < r_2)\) of positive numbers the inequality \(r_1 \leq \|B^n x_k\| \leq r_2 \) \((x_k \in X)\) implies the boundedness of the sequence \(\{n_k\} \). This simple fact yields the following

Lemma 2. Let \(E \) be a compact subset of \(X \) and \(0 \notin E \). Then for every pair \(r_1, r_2 \) \((r_1 \leq r_2)\) of positive numbers the set \(\{ x : r_1 \leq \|x\| \leq r_2 \} \cap \tau(B) \) is compact.

The following lemma reduces our problem of examining a measure \(M \in M(X) \) with the property \(cM = BM \) for some \(c > 0 \) to the case of measures concentrated on \(\tau(E) \), where \(E \) is compact and \(0 \notin E \).

Lemma 3. Let \(M \in M(X) \) and \(cM = BM \) for certain \(c > 0 \). Then there exists a decomposition

\[
M = \sum_{n=1}^{\infty} M_n,
\]

where \(M_n \in M(X) \), \(cM_n = BM_n \), \(M_n \) are concentrated on disjoint sets \(\tau(E_n) \), \(0 \notin E_n \) and \(E_n \) are compact.

The lemma follows immediately from Lemma 5.4 of [16].

Now, we are ready to prove the representation of the characteristic functionals of operator semi-stable measures.

Theorem 3. Let \(B \) be an invertible operator from \(B(X) \) with

\[
\lim_{n \to +\infty} B^n = 0.
\]

A probability measure \(\mu \) on \(X \) is an operator semi-stable measure and \(\mu^c = B\mu \ast \delta_b \), where \(c \in (0, 1) \) and \(b \in X \), if and only if there exist an element \(a \in X \), an operator \(R \in \mathcal{R}(X) \) such that \(cR = BRB^* \) for certain \(c \in (0, 1) \).
and a finite measure \(\lambda \) on \(T = \{ x \in X : 1 \leq \| x \| \leq \| B^{-1} \| \} \) such that

\[
\hat{\mu}(y) = \exp \left\{ i \langle a, y \rangle - \frac{1}{2} \langle y, By \rangle + \sum_{n=-\infty}^{\infty} \frac{1}{\sigma^n} \int_T \left[\exp(i \langle B^n x, y \rangle) - 1 - i \langle B^n x, y \rangle 1_D(B^n x) \right] \lambda(dx) \right\},
\]

where \(1_D \) denotes the indicator of the unit ball \(D \) in \(X \) and \(y \in X^* \).

Proof. To prove the necessity let us assume that \(\mu \) is an operator semi-stable measure, \(B \) is an invertible operator from \(B(X) \) with

\[
\lim_{n \to \infty} B^n = 0
\]

and \(\mu^c = B \mu * \delta_0 \) for certain \(c \in (0, 1) \). Further, \(\mu \) is an infinitely divisible measure and \(\mu = q * \tilde{\sigma}(M) \), where \(q \) is a symmetric Gaussian measure with the covariance operator \(E \) and \(M \in M(X) \). Moreover, for certain \(c \in (0, 1) \) we have

\[
BM = cM, \quad cR = BBR^*.
\]

By Lemma 3 there exists a decomposition

\[
M = \sum_{n=1}^{\infty} M_n,
\]

where \(M_n \in M(X) \), \(BM = cM \), \(M_n \) are concentrated on disjoint sets \(\tau(E_n), 0 \notin E_n \) and \(E_n \) are compact.

Let \(D_n = \tau(E_n) \cap \{ x : 1 \leq \| x \| \leq \| B^{-1} \| \} \). By Lemma 2 the set \(D_n \) is compact. We define an equivalence relation in \(D_n \) as follows: \(x_1 \sim x_2 \), \(x_1, x_2 \in D_n \), if and only if there exists an integer \(n \) such that \(x_1 = B^n x_2 \). In order to prove the continuity of this relation suppose that \(x_n \sim x_n' \) and that the sequences \(\{ x_n \} \) and \(\{ x_n' \} \) converge to \(x \) and \(x' \), respectively. Then for some integers \(k_n \) we have \(B^{k_n} x_n = x_n' \). By the compactness of \(E_n \) and the assumption \(0 \notin E_n \), the sequence \(\{ k_n \} \) is bounded. Clearly, for any its cluster point \(k_0 \) we have \(B^{k_0} x = x' \), which implies \(x \sim x' \). Thus the relation \(\sim \) is continuous. Hence it follows that the quotient space \(D_n / \sim \) is compact ([1], p. 97). The coset containing \(x \) will be denoted by \([x] \).

Further, the mapping \(x \rightarrow [x] \) from \(D_n \) onto \(D_n / \sim \) is continuous. A theorem of Kuratowski (Theorem 1.4.2 of [12]) shows that there exists a Borel subset \(T_n \) of \(D_n \) such that \(T_n \) intersects each \([x] \) at exactly one point.

Let \(f_n \) be a mapping of \(\bigcup_{n=1}^{\infty} T_n \times Z \) into \(\tau(E_n) \) such that \(f_n(x, n) = B^n x \). The mapping \(f_n \) is continuous and one-one. By a theorem of Kuratowski (Corollary 1.3.2 of [12]) the mapping \(f_n^{-1} \) is measurable. Let \(f \) be a mapping of \(\bigcup_{n=1}^{\infty} T_n \times Z \) into \(\bigcup_{n=1}^{\infty} \tau(E_n) \) such that \(f(x, m) = f_n(x, m) \) if \(x \in T_n \). The
mapping \(f \) is one-one, and \(f \) and \(f^{-1} \) are measurable. Hence the \(\sigma \)-field generated by the collection of the sets \(B^n(F) \), where \(n \) is integer and \(F \) stands for Borel subsets of \(T_\circ = \bigcup_{n=1}^{\infty} T_n \), consists of all Borel subsets of \(\bigcup_{n=1}^{\infty} x(E_n) \).

Put

\[
g(n, F) = M(\{B^n x : x \in F\}) \quad (n \in \mathbb{Z}).
\]

Since \(BM = cM \), we have

\[
g(n, F) = c^{-n}g(0, F) = c^{-n}\lambda_0(F),
\]

where \(\lambda_0(F) = g(0, F) \) for all Borel subsets of \(T_\circ \). We can extend (4.4) for all Borel subsets of \(X \setminus \{0\} \) by the formula

\[
M(F) = \sum_{n=-\infty}^{\infty} \frac{1}{c^n} \int_{T} 1_F(B^n x) \lambda(\mathcal{d}x),
\]

where \(\lambda(G) = \lambda_0(G \cap T_\circ) \) for any Borel subset \(G \) of \(T = \{x : 1 \leq \|x\| \leq \|B^{-1}\|\} \). Further, from the Dettweiler representation of the characteristic functionals of an infinitely divisible measure on \(X \) (Theorem 1.2.5 of [3]) we get the formula

\[
\mu(y) = \exp \left\{ i \langle a, y \rangle - \frac{1}{2} \langle y, By \rangle + \int_X \left[e^{i \langle x, y \rangle} - 1 - i \langle x, y \rangle 1_D(x) \right] M(dx) \right\},
\]

where \(y \in X^* \), \(a \in X \), \(R \in R(X) \), \(M \in M(X) \) and \(1_D \) denotes the indicator of the unit ball \(D \) in \(X \). Inserting (4.5) for \(M \) into (4.6) we get (4.1).

By a simple calculation we can check that each measure \(\mu \) with the characteristic functional of form (4.1) fulfills equation (2.1), which completes the proof.

A probability measure \(\mu \) on \(X \) is called semi-stable if its characteristic functional satisfies the functional equation

\[
[\hat{\mu}(y)]^p = \hat{\mu}(by)e^{i\langle a, y \rangle} \quad \text{for all } y \in X^*,
\]

where \(0 < |b| < 1 \), \(0 < c < 1 \) and \(a \in X \).

Proposition 4. Let \(\mu \) be a non-degenerate measure on \(X \) satisfying (4.7) and let \(p \) be the unique real solution of the equation \(|b|^p = c \). Then

(a) \(0 < p < 2 \);

(b) \(p = 2 \) if and only if \(\mu \) is a Gaussian measure;

(c) \(0 < p < 2 \) if and only if \(\mu = \delta(M) \) for some \(M \in M(X) \).
The proposition is an immediate consequence of the following fact: if \(\mu \) is a semi-stable measure of \(X \), then \(y \mu \) is a semi-stable measure on the real line for all \(y \in X^* \).

From now on the unique real solution \(p \) of the equation \(|b|^p = c\) for a non-degenerate semi-stable probability measure \(\mu \) on \(X \) will be called the exponent of \(\mu \).

Corollary 2. Let \(\mu \) be a probability measure on \(X \). Then \(\mu \) is semi-stable if and only if either \(\mu \) is Gaussian or there exist constants \(p \) (\(0 < p < 2 \)) and \(b \) (\(0 < |b| < 1 \)), a finite measure \(\lambda \) on \(T = \{ x : 1 \leq \|x\| \leq 1/|b| \} \) and an element \(a \in X \) such that, for every \(y \in X^* \),

\[
(4.8) \quad \hat{\mu}(y) = \exp \left\{ i \langle a, y \rangle + \sum_{n=-\infty}^{\infty} \frac{1}{|b|^{pn}} \int_T \left[\exp \left(i b^n \langle x, y \rangle \right) - 1 - i b^n \langle x, y \rangle 1^D(b^n x) \right] \lambda(dx) \right\},
\]

where \(1_D \) denotes the indicator of the unit ball \(D \) in \(X \).

The measure \(\lambda \) appearing in representation (4.8) will be called the representing measure for \(\mu \). Let \(\Lambda_p(X) \) denote the set of all representing measures corresponding to semi-stable measures on \(X \) with the exponent \(p \) (\(0 < p < 2 \)). Clearly, \(\lambda \in \Lambda_p(X) \) if and only if the measure \(M \) defined by

\[
(4.9) \quad M(F) = \sum_{n=-\infty}^{\infty} \frac{1}{|b|^{pn}} \int_T 1_F(b^n x) \lambda(dx)
\]

belongs to \(M(X) \). The set \(M(X) \) has the following property: if \(N \) is a non-negative measure on \(X \) and \(N \leq M \), where \(M \in M(X) \), then \(N \in M(X) \). Hence \(\lambda \in \Lambda_p(X) \) if and only if the measure \(\lambda_0 \) defined by \(\lambda_0(E) = \lambda(E) + + \lambda(-E) \) belongs to \(\Lambda_p(X) \). This fact reduces the problem of determining \(\Lambda_p(X) \) to examining symmetric measures \(\lambda \). We say that \(X \) is of type \(r \) (\(2 \geq r > 0 \)) whenever there exists a positive constant \(c \) such that for any collection \(\xi_1, \xi_2, \ldots, \xi_n \) of independent symmetrically distributed \(X \)-valued random variables we have

\[
E \left\| \sum_{j=1}^{n} \xi_j \right\|^r \leq c \sum_{j=1}^{n} E \left\| \xi_j \right\|^r.
\]

Theorem 4. If \(X \) is of type \(r \) and \(r > p \), then \(\Lambda_p(X) \) consists of all finite Borel measures on \(T \).

Proof. We use arguments similar to those given by Jurek and Urbanik in [7]. To prove the theorem it suffices to show that for each symmetric finite measure \(\lambda \) on \(X \) the measure \(M \) defined by (4.9) belongs
to $M(X)$. Let

$$M_0(F) = \sum_{n=-\infty}^{0} \frac{1}{|b|^{pn}} \int_{\mathcal{F}} 1_{F}(b^{n}x) \lambda(dx)$$

and

$$M_k(F) = \frac{1}{|b|^{pk}} \int_{\mathcal{F}} 1_{F}(b^{k}x) \lambda(dx) \quad (k = 1, 2, \ldots);$$

then the measures $M_n (n = 0, 1, 2, \ldots)$ are finite on X and vanish at 0. Put, for simplicity, $\mu_k = e(M_k) \ (k = 0, 1, \ldots)$. Since

$$M = \sum_{k=0}^{\infty} M_k,$$

we conclude that $M \in M(X)$ if and only if the sequence $\{\mu_0 \ast \mu_1 \ast \ldots \ast \mu_n\}$ converges to a probability measure on X or, equivalently, the series $\sum_{k=0}^{\infty} \eta_k$ of independent X-valued random variables η_0, η_1, \ldots with probability distributions μ_0, μ_1, \ldots, respectively, converges almost surely (Theorem 3.1 of [4]). To prove that $\sum_{k=0}^{\infty} \eta_k$ converges almost surely, it suffices, by the Borel-Cantelli lemma, to show the convergence of the series

$$\sum_{k=0}^{\infty} \mu_k(\{x: \|x\| > a^k\}),$$

where $a = |b|^{(r+1)^{-1}(r-p)} < 1$. Setting $a_k = M_k(X)$ and $\nu_k = a_k^{-1} M$ for $k = 1, 2, \ldots$, we get

$$\mu_k = \exp(-a_k) \sum_{n=0}^{\infty} \frac{a_n^k}{n!} \nu_k^n$$

and

$$a_k = |b|^{-pk} \lambda(T).$$

Further, for a positive constant σ we obtain

$$\int_{X} \|x\|^r \nu_k^n(dx) \leq \sigma_1 |b|^{krn}.$$

Consequently, by (4.11) we have

$$\int_{X} \|x\|^r \mu_k(dx) \leq \sigma_1 |b|^{kr} \exp(-a_k) \sum_{n=0}^{\infty} \frac{a_n^k}{(n-1)!}. $$
Since
\[\exp(-a_k) \sum_{n=0}^{\infty} \frac{a_k^n}{(n-1)!} \leq c_n a_k \quad \text{for certain } c_n > 0, \]
we get the inequality
\[\int_X \|x\|^r \mu_k(dx) \leq c_n a_k^{k+r+1} \quad (k = 1, 2, \ldots) \]
with a constant \(c_n \). Consequently,
\[\mu_k(\{x: \|x\| > a_k\}) \leq a^{-kr} \int_X \|x\|^r \mu_k(dx) \leq c_n a_k^k \quad (k = 1, 2, \ldots), \]
which proves the convergence of series (4.10). This completes the proof of the theorem.

In particular, from Theorem 4 for \(p < 1 \) and every Banach space \(X \) as well as for \(1 \leq p < r \) and Banach spaces \(X \) of type \(r \) we get the description of \(A_p(X) \).

REFERENCES

INSTITUTE OF MATHEMATICS
UNIVERSITY OF WROCŁAW

Reçu par la Rédaction le 18. 11. 1977