On the length of some curves in the unit sphere

by L. M. Kelly and J. Zaks (Michigan, U. S. A.)

The purpose of this note is to present simple proofs of the following two theorems.

Theorem 1. If \(P_1, \ldots, P_n \) are \(n \) points in the unit sphere \(S \) of the Euclidean \(n \)-dimensional space \(E^n \), \(P_i = (p_{i1}, \ldots, p_{in}) \), \(1 \leq i \leq n \), and \(p_{ii} = 0 \) for all \(1 \leq i \leq n \), then

\[
\sum_{i=1}^{n-1} q(P_i, P_{i+1}) \geq \pi/2,
\]

where \(q(x, y) \) is the length of the (shortest) great circle’s arc joining the points \(x \) and \(y \) of \(S \).

Theorem 2. If \(P_1, \ldots, P_n \) are \(n \) points in the unit sphere \(S \) of \(E^n \), \(P_i = (p_{i1}, \ldots, p_{in}) \), \(1 \leq i \leq n \), and \(p_{ii} = 0 \) for all \(1 \leq i \leq n \), then

\[
\sum_{i=1}^{n} q(P_i, P_{i+1}) \geq \pi \quad \text{(where \(P_{n+1} = P_1 \)).}
\]

These theorems were mentioned by Nehari [2], and were proven analytically by Lasota and Olech [1] (Theorem 1) and Schwartz [4] (Theorems 1 and 2). Schwartz observed that Theorem 2 implies Theorem 1, by simply going along the arc twice, in opposite directions, so as to get a closed arc. We have independently obtained the following essentially different and considerably simpler geometric proofs.

Let \(T_j : E^n \to E^n \) be defined by \(T_j(x_1, \ldots, x_j, \ldots, x_n) = (x_1, \ldots, -x_j, \ldots, x_n) \), for all \(1 \leq j < n \); \(T_j \) is the reflection of \(E^n \) in the hyperplane \(H_j \), given by the equation \(x_j = 0 \); clearly \(T_j(y) = y \) if and only if \(y \in H_j \); it is well known that each one of the \(T_j \) is an isometric transformation, hence we will use this without proving it; obviously \(T_j(S) = S \) for all \(1 \leq j \leq n \).

We are ready for the

Proof of Theorem 1. Since each \(T_j \) is an isometric transformation,

\[
q(P_i, P_{i+1}) = q[T_iT_{i-1} \ldots T_1(P_i), T_iT_{i-1} \ldots T_1(P_{i+1})]
\]

for all \(1 \leq i \leq n-1 \),
and therefore

\[\sum_{i=1}^{n-1} q(P_i, P_{i+1}) = \sum_{i=1}^{n-1} q[T_i T_{i-1} \ldots T_1(P_i), T_i T_{i-1} \ldots T_1(P_{i+1})]. \]

Observe that \(T_1(P_1) = P_1 \), and that for all \(1 \leq i \leq n-1 \), \(T_{i+1}[T_i T_{i-1} \ldots T_1(P_{i+1})] = T_i T_{i-1} \ldots T_1(P_{i+1}) \), since this last point is in \(H_{i+1} \). In addition, \(T_{n-1} T_{n-2} \ldots T_1(P_n) = -P_n \) since each one of the first \(n-1 \) coordinates of \(P_n \) has been multiplied exactly once by \(-1\), and \(p_{nn} = 0 \).

It therefore follows that the right-hand side of (2) is the length \(l \) of an arc in \(S \), joining \(P_1 \) to \(-P_n\); \(l \) is equal, by (2), to the length of the given arc \(P_1 P_2 \ldots P_n \) in \(S \), joining \(P_1 \) to \(P_n \). Therefore \(2l \) is the length of an arc in \(S \), joining \(P_n \) to \(-P_n\), and it is well known that an arc in \(S \) that connects two antipodal points has length \(\geq \pi \), therefore \(l \geq \pi/2 \), and the proof is complete.

Proof of Theorem 2. As in the previous proof,

\[q(P_i, P_{i+1}) = q[T_i T_{i-1} \ldots T_2(P_i), T_i T_{i-1} \ldots T_2(P_{i+1})] \]

for all \(2 \leq i \leq n \),

is true and implies

\[\sum_{i=1}^{n} q(P_i, P_{i+1}) = \sum_{i=1}^{n} q[T_i T_{i-1} \ldots T_2(P_i), T_i T_{i-1} \ldots T_2(P_{i+1})]. \]

Here the first term in the right-hand side of (2') is \(q(P_1, P_2) \), and \(T_i[T_{i-1} \ldots T_2(P_i)] = T_{i-1} T_{i-2} \ldots T_2(P_i) \), for all \(2 \leq i \leq n \); in addition, \(T_n T_{n-1} \ldots T_2(P_{n+1}) = T_n T_{n-1} \ldots T_2(P_1) = -P_1 \), since \(P_{n+1} = P_1 \) and it has \(p_{11} = 0 \).

Therefore the left-hand side of (2') is equal, by (2'), to the length of an arc in \(S \) joining \(P_1 \) to \(-P_1\), which is (again) \(\geq \pi \); this completes the proof.

Remark. The idea of the proofs is to keep the first \(i \) parts of the arc while replacing the rest of the arc by the \(T_i \)-image of that rest, doing it successively for \(i = 1, i = 2, \ldots, i = n-1 \) (with a slight variation for the other proof).

Observe that \(n \) applications of Theorem 1 yield a result, weaker than that of Theorem 2; namely with \(\pi \) being replaced by \(\frac{n}{2(n-1)} \pi \).

Our proofs can easily be applied to the following:

Corollary 1. If a path in \(S \) contains at least one point on every \(H_j \), for all \(1 \leq j \leq n \), then it is of length \(\geq \pi/2 \); if, in addition, it is closed, then it is of length \(\geq \pi \).
Corollary 2. If a path in the boundary C of the unit cube in E^d contains at least one point on every H_j, for all $1 \leq j \leq n$, then it is of length ≥ 2; if, in addition, the path is closed, then it is of length ≥ 4.

This is a particular case of

Corollary 3. If P is a (centrally symmetric) polytope in E^d, such that $T_j(P) = P$ for all $1 \leq j \leq n$ and the minimal length of a path in the boundary $Bd(P)$ of P, connecting a point x of $Bd(P)$ to $-x$, is p; then the length of a path in $Bd(P)$ that contains at least one point of every H_j, for all $1 \leq j \leq n$, is $\geq p/2$; if, in addition, the path is closed, then it is of length $\geq p$.

Furthermore, it need not be assumed in Corollary 3 that P is convex, nor polyhedral; the collection of the metric transformations can be replaced by an appropriate finite set of isometric transformations; we omit the rest for obvious reasons.

Using reflections in a similar way, Shaer and Wetzel proved ([3], Lemma 1) that if a is a closed path that meets each and every $(d-1)$-dimensional face of a hyperbox in E^d of diagonal p, than the length of a is at least $2p$.

References

MICHIGAN STATE UNIVERSITY
EAST LANSING, MICHIGAN, U. S. A.
and
UNIVERSITY OF HAIFA
HAIFA, ISRAEL

Reçu par la Rédaction le 23. 11. 1971