CONVERGENCE IN THE DUAL OF CERTAIN $K\{M_p\}$-SPACES

BY

LARRY KITCHENS (BOONE, NORTH CAROLINA)

AND CHARLES SWARTZ (LAS CRUCES, NEW MEXICO)

In this note we give two theorems characterizing convergent sequences in the dual of certain $K\{M_p\}$-spaces (see [3], Chapter II for material on $K\{M_p\}$-spaces). Theorem 6 gives a characterization in terms of the usual representation of elements in $K\{M_p\}'$, when $\{M_p\}$ satisfies conditions (M), (N) and (P) (see [3], II. 2.3 and 4.2); this result is somewhat analogous to the convergence criteria for \mathcal{F}' given in Theorem 56, Chapter 3 of [2], and to the convergence criteria for \mathcal{H}_c' given in Theorem 3 of [8]. Theorem 7 gives a characterization in terms of regularizers. There do not seem to be any results analogous to Theorem 7 recorded, even for the case where $K\{M_p\} = \mathcal{F}$.

First, we recall some facts pertinent to $K\{M_p\}$-spaces. Let $\{M_p\}$ be a sequence of extended real-valued functions defined on \mathbb{R}^n such that $1 \leq M_1(x) \leq M_2(x) \leq \ldots$ It is further assumed that at each point $x \in \mathbb{R}^n$ all the $M_p(x)$ are finite or infinite. If $S = \{x: M_p(x) < \infty, p \geq 1\}$, it is assumed that M_p restricted to S is continuous. An infinitely differentiable function φ defined on \mathbb{R}^n belongs to $K\{M_p\}$ if

1. $D^a\varphi(x) = 0$ for $x \notin S$ and any multi-index a,
2. $M_p D^a\varphi$ is a continuous bounded function on S for $1 \leq p < \infty$ and $0 \leq |a| \leq p$.

The vector space $K\{M_p\}$ is then given the locally convex topology generated by the norms

3. $\|\varphi\|_p = \sup\{M_p(x)|D^a\varphi(x)|: x \in S, |a| \leq p\}$ \hspace{1cm} (1 \leq p < \infty).

We will only consider $K\{M_p\}$-spaces which satisfy three further conditions. The sequence $\{M_p\}$ satisfies the following conditions:

(M) Each M_p is quasi-montonic, i.e., for $|x'_j| \geq |x''_j|$ and x'_j and x''_j having the same sign,

$$M_p(x_1, \ldots, x'_j, \ldots, x_m) \geq C_p M_p(x_1, \ldots, x''_j, \ldots, x_m).$$
(N) For each \(p \), there exists an integer \(p' > p \) such that the quotient
\(M_p(x) = m_{pp'}(x) \) is summable on \(\mathbb{R}^m \) and \(m_{pp'}(x) \to 0 \) as \(|x| \to \infty \).
(Here it is understood that the quotient \(\infty / \infty \) is 0.)

(P) For \(\varepsilon > 0 \) and \(p \) an integer, there exist \(p' > p \) and \(N \) such that
\(M_p(x) < \varepsilon M_p'(x) \) if \(|x| > N \) or \(M_p(x) > N \).

Many of the familiar test spaces are \(K\{M_p\} \)-spaces which satisfy
conditions (M), (N) and (P).

Example 1. For \(K \subseteq \mathbb{R}^m \) compact, set \(M_p(x) = 1 \) if \(x \in K \) and
\(M_p(x) = \infty \) if \(x \notin K \). Then \(K\{M_p\} = \mathscr{D}_K \) (see [5]), and \(\{M_p\} \) satisfies (M),
(N) and (P).

Example 2. If \(M_p(x) = (1 + |x|)^p \), then \(K\{M_p\} = \mathbb{S} \) is the space
of rapidly decreasing functions [5]. \(\{M_p\} \) is easily seen to satisfy conditions
(M), (N) and (P).

Example 3. If \(M_p(x) = \exp(p \gamma(x)) \), where \(\gamma(x) = (1 + |x|^2)^{1/2} \), then
\(K\{M_p\} \) is the test space \(\mathcal{X}_1 \) of [9]. Again conditions (M), (N) and (P)
are satisfied.

Example 4. Let \(\{r_j\} \) be a sequence such that \(0 < r_1 < r_2 < \ldots < r \)
and \(r_j \to r \). Set \(M_p(t) = \exp(r_p |t|) \) for \(t \in \mathbb{R} \). In this case \(K\{M_p\} = H_r \) as
in [8], and \(\{M_p\} \) satisfies conditions (M), (N) and (P).

In section II.4.2 of [3] it is shown that the sequence of norms

\[
\|\varphi\|_{p,1} = \sup_{|\alpha| \leq p} \int M_p(x) |D^\alpha \varphi(x)| \, dx \quad (p \geq 1)
\]

(4)

generates the same locally convex topology on \(K\{M_p\} \) as the sequence
\(\{\| \|_p\} \) given in (3). (Here \(\int f(x) \, dx \) denotes the integral of \(f \) over \(S \).) To
obtain our first result we consider another sequence of norms. Note that
since \(m_{pp'} \) in condition (N) is summable over \(\mathbb{R}^m \) and \(m_{pp'}(x) \to 0 \) as \(|x| \to \infty \),
we infer that \(m_{pp'} \in L^2(\mathbb{R}^m) \). If \(\varphi \in K\{M_p\} \) and \(|\alpha| \leq p \), then

\[
M_p(x) |D^\alpha \varphi(x)| \leq m_{pp'}(x) \|\varphi\|_{p'},
\]

where \(p' \) is given by (N), so that \(M_p D^\alpha \varphi \) is in \(L^2(\mathbb{R}^m) \). Thus we may consider
the sequence of norms given by

\[
\|\varphi\|_{p,2} = \sup_{|\alpha| \leq p} \left(\int (M_p(x) |D^\alpha \varphi(x)|^2 \, dx \right)^{1/2} \quad (p \geq 1).
\]

(5)

(Similar \(L^2 \)-type norms are considered in Theorem 7 of I. 3.6 of [4].)
First, we show that the sequence of norms in (5) is equivalent to the
sequence of norms in (3).

Lemma 5. The sequence of norms \(\{\| \|_p\} \) is equivalent to the sequence of
norms \(\{\| \|_{p,2}\} \), i.e., the two sequences generate the same locally convex topology
on \(K\{M_p\} \).
Proof. Given p and α with $|\alpha| \leq p$, we have, for $\varphi \in K\{M_p\}$,

$$\int M_p^2(x)|D^\alpha \varphi(x)|^2 \, dx \leq \sup_x M_p^{2'}(x)|D^\alpha \varphi(x)|^2 \int m_{pp'}^2(x) \, dx,$$

where p' is given as in condition (N). Thus there is a constant $C_p > 0$ such that $|\varphi|_{p,2} \leq C_p |\varphi|_{p'}$. On the other hand, there is a constant A_p and a positive integer $q \geq p$ such that $|\varphi|_p \leq A_p |\varphi|_{q,1}$ (see [3], II. 4.2). Let q' correspond to q as in condition (N). Then we have, by the Cauchy-Schwarz inequality,

$$\int M_q(x)|D^\alpha \varphi(x)| \, dx \leq \left(\int m_{qq'}^2(x) \, dx \right)^{1/2} \left(\int M_q^2(x)|D^\alpha \varphi(x)|^2 \, dx \right)^{1/2} \quad \text{for } |\alpha| \leq q.$$

Thus there is a constant B_p such that $|\varphi|_p \leq A_p |\varphi|_{q,1} \leq B_p |\varphi|_{q',2}$ and the lemma follows.

Remark. The equivalence of $\{||_p\}$ and $\{||_{p,2}\}$ is proved in Theorem 7 of I.3.6 of [4] with some additional assumptions on the $\{M_p\}$. (See equation (10) of I.3.6 in [4]; in particular, it is assumed that the M_p are infinitely differentiable.) From the lemma, these additional assumptions are not necessary.

We now give the first characterization of sequential convergence in $K\{M_p\}'$.

Theorem 6. Let $\{M_p\}$ satisfy conditions (M), (N) and (P). The following conditions are equivalent:

(i) $T_n \to 0$ weakly (strongly) in $K\{M_p\}'$ (see [3], I.6.4);

(ii) there exist a positive integer p and, for each multi-index α with $|\alpha| \leq p$, a sequence $(f_{\alpha,n})_{n=1}^\infty \subseteq L^2(S)$ such that

$$T_n = \sum_{|\alpha| \leq p} (-1)^{|\alpha|} D^\alpha (M_p f_{\alpha,n}) \quad \text{and} \quad f_{\alpha,n} \to 0 \quad \text{in } L^2(S).$$

Proof. Suppose $T_n \to 0$ weakly in $K\{M_p\}'$. By I.6.4 of [3], there is a positive integer p such that

$$\sup \{ |\langle T_n, \varphi \rangle| : \varphi \in K\{M_p\}, |\varphi|_{p,2} \leq 1 \} \to 0 \quad \text{as } n \to \infty. \quad (6)$$

In particular, there is a constant $B > 0$ such that $|\langle T_n, \varphi \rangle| \leq B |\varphi|_{p,2}$ for $\varphi \in K\{M_p\}$. Let Γ' be the direct sum of a finite number (equal to the number of multi-indices α such that $|\alpha| \leq p$) of copies of $L^2(S)$ and equip Γ' with the norm

$$\|\{f_{\alpha}\}_{|\alpha| \leq p}\| = \sup_{|\alpha| \leq p} \|f_{\alpha}\|_2, \quad \text{where} \quad \|f_{\alpha}\|_2 = \left(\int |f_{\alpha}(x)|^2 \, dx \right)^{1/2}.$$

Define a map θ from $K\{M_p\}$ into Γ by $\theta : \varphi \to \{M_p D^\alpha \varphi\}_{|\alpha| \leq p}$, and note that θ is one-one. Let Λ be the image of $K\{M_p\}$ under θ, Λ the closure
of Λ in Γ, and Λ^\perp the orthogonal complement of Λ in Γ. For each n, define a linear functional L_n on Λ by $\langle L_n, \theta(\varphi) \rangle = \langle T_n, \varphi \rangle$. Since
$$|\langle L_n, \theta(\varphi) \rangle| \leq B \|\varphi\|_{p,2} = B \|\theta(\varphi)\|,$$
L_n is continuous. We extend L_n to $\bar{\Lambda}$ by continuity, and then to Γ by setting $\langle L_n, g \rangle = 0$ for $g \in \bar{\Lambda}^\perp$. This extension, which we continue to denote by L_n, has the same norm as L_n over Λ. But, by (6), $\|L_n\| \to 0$ in Γ' as $n \to \infty$. By the Riesz Representation Theorem, for each n, there exist functions $\{f_{a,n}: |a| \leq p\} \subseteq L^2(S)$ such that, for each $G = \{g_a: |a| \leq p\} \subseteq \Gamma'$,
$$\langle L_n, G \rangle = \sum_{|a| \leq p} \int f_{a,n}(x) g_a(x) \, dx \quad \text{with} \quad \|L_n\| = \sum_{|a| \leq p} \|f_{a,n}\|_2.$$

In particular, for $\varphi \in K\{M_p\}$,
$$\langle L_n, \theta(\varphi) \rangle = \langle T_n, \varphi \rangle = \sum_{|a| \leq p} \int f_{a,n}(x) M_p(x) D^a \varphi(x) \, dx$$
or
$$T_n = \sum_{|a| \leq p} (-1)^{|a|} D^a (M_p f_{a,n}).$$

Since
$$\|L_n\| = \sum_{|a| \leq p} \|f_{a,n}\|_2 \to 0,$$
(ii) is established.

To show that (ii) implies (i) note that, for $\varphi \in K\{M_p\}$,
$$|\langle T_n, \varphi \rangle| \leq \sum_{|a| \leq p} \int |f_{a,n}(x)| M_p(x) |D^a \varphi(x)| \, dx \leq \|\varphi\|_{p,2} \sum_{|a| \leq p} \|f_{a,n}\|_2$$
so that, by (ii), $T_n \to 0$ weakly in $K\{M_p\}'$.

Remark. The proof of Theorem 6 presented here differs from the proof of the characterization of convergent sequences in \mathcal{D}'_K given in [5] (Theorem XXIII of Chapter III) or in [2] (Theorem 19, Section 5 of Chapter 3). The proofs in [5] and [2] seem to rely on using L^2-space methods to extend the linear functional L_n, and then obtain the fact that $L_n \to 0$ weakly in Γ'. By employing the result in 1.6.4 of [3], we obtain immediately that actually $L_n \to 0$ strongly in Γ'. After making this observation, we see that it is really not important to use the L^2-space. That is, we could use the norms $\{\|\|_{p,1}\}$ (or $\{\|\|_p\}$) and let Γ' be a direct sum of $L^1(S)$ (or $C(S)$) and obtain a representation as in (ii) with $f_{a,n} \in L^\infty(S)$ and $\lim \|f_{a,n}\|_\infty = 0$ (or $f_{a,n}$ bounded measures with $\text{var}(f_{a,n}) \to 0$).

We now give a characterization of sequential convergence in $K\{M_p\}'$ in terms of regularizations. For this result we impose an additional condition on the sequence $\{M_p\}$. The sequence $\{M_p\}$ satisfies the following condition:
(F) Each M_p is finite valued, $M_p(x) = M_p(-x)$ for $x \in \mathbb{R}^m$, and, for each p, there are $p' > p$ and C_p such that

$$M_p(x + h) \leq C_p M_{p'}(x) M_{p'}(h) \quad \text{for } x, h \in \mathbb{R}^m.$$

Problems concerning convolution in $K\{M_p\}$-spaces have been treated in [7]. In particular, if condition (F) is satisfied, translation is continuous on $K\{M_p\}$ and regularizations can be formed (see Lemma 1 of [7] and III.3.1 of [3]). Recall that if $T \in \mathcal{D}'$ and $\varphi \in \mathcal{D}$, the regularization of T by φ is the function $T \ast \varphi: x \mapsto \langle T, (\tau_x \varphi) \rangle$, where $\tau_x \varphi: y \mapsto \varphi(y - x)$ and $\varphi: x \mapsto \varphi(-x)$. Thus, if $T \in K\{M_p\}'$ and $\varphi \in \mathcal{D}$, then $T \ast \varphi$ is an infinitely differentiable function (see [5], Chapter VI, Theorem XI).

Before stating our result, we introduce some auxiliary spaces. For each positive integer p, let B_p be the vector space of all continuous complex-valued functions f on \mathbb{R}^m such that

$$|f|_p = \sup \{|f(x)|/M_p(x): x \in \mathbb{R}^m\} < \infty.$$

We equip B_p with the norm $| \cdot |_p$, and note that B_p is a B-space under this norm.

Theorem 7. Let $\{M_p\}$ satisfy conditions (M), (N) and (F). The following conditions are equivalent:

(i) $T_n \to 0$ in $K\{M_p\}'$ (weakly or strongly);

(ii) condition (ii) of Theorem 6;

(iii) there is a positive integer q such that $T_n \ast \varphi \to 0$ in B_q for each $\varphi \in \mathcal{D}$;

(iv) there exist positive integers q and l and, for each multi-index a with $|a| \leq l$, there exists a sequence $\{f_{a,n}\} \subseteq B_q$ such that

$$\lim_{n} f_{a,n} = 0 \text{ in } B_q \quad \text{and} \quad T_n = \sum_{|a| \leq l} D^a f_{a,n}.$$

Proof. Since each M_p is finite valued from condition (F), condition (N) implies condition (F) and Theorem 6 gives the equivalence of (i) and (ii).

Suppose (ii) holds. For $\varphi \in \mathcal{D}$, we have

$$|T_n \ast \varphi(x)| = \left| \sum_{|a| \leq l} (-1)^{|a|} \int M_p(y)f_{a,n}(y)D^a\varphi(x-y)dy \right|$$

$$\leq C_q M_q(x) \sum_{|a| \leq l} \int M_q(t)|f_{a,n}(x-t)||D^a\varphi(t)|dt$$

$$\leq C_q M_q(x) ||\varphi||_{q,2} \sum_{|a| \leq l} ||f_{a,n}||_2,$$

where $q = p'$ is given by condition (F), and the Cauchy-Schwartz inequality has been used. By (ii) and (7), $T_n \ast \varphi \to 0$ in B_q, and (iii) is established.
Suppose (iii) holds. To establish (iv) we apply Theorem 3 of [1] with the space B in this theorem equal to B_q as above. By the conclusion of this theorem, there is a positive integer l and sequences $\{f_n\}$ and $\{g_n\}$ from B_q such that $\lim f_n = \lim g_n = 0$ in B_q and

$$\langle T_n, \varphi \rangle = \int f_n(x)(1 - \Delta(x))\varphi(x)\,dx + \int g_n(x)\varphi(x)\,dx \quad \text{for } \varphi \in \mathcal{D}. \tag{8}$$

Since f_n and g_n belong to B_q, the map

$$\varphi \mapsto \int f_n(x)(1 - \Delta(x))\varphi(x)\,dx + \int g_n(x)\varphi(x)\,dx$$

defines a continuous linear functional on $K\{M_p\}$ (see [3], II.4.2), and equation (8) shows this continuous linear functional agrees with T_n on the dense set \mathcal{D} (see [3], II.2.5). Therefore, equation (8) is valid for $\varphi \in K\{M_p\}$ and (iv) follows.

Suppose (iv) holds. We may assume that $q \geq l$ in (iv) since the injections $B_j \to B_{j+1}$ are continuous. For $\varphi \in K\{M_p\}$,

$$|\langle T_n, \varphi \rangle| \leq \sum_{|a| \leq l} \int |f_{a,n}(x)|D^a\varphi(x)\,dx$$

$$\leq \sup \{|f_{a,n}(x)/M_q(x)| : x \in \mathbb{R}^m, \ |a| \leq l\} \|\varphi\|_{q,1},$$

so that $T_n \to 0$ weakly. That is, (i) holds and the result is established.

Remarks. Note that the spaces in Examples 1-4 satisfy condition (F) so that Theorem 7 is applicable to these spaces.

For $K\{M_p\} = \mathcal{S}$, the equivalence of (i) and (iv) is recorded in Theorem 56 in Chapter 3 of [2]. (See also the remark following Theorem VI of Chapter VII of [5].) No analogues of the regularization condition (iii) seems to be recorded, even for \mathcal{S}.

For $K\{M_p\} = \mathcal{H}_r$ as in Example 4, the equivalence of (i) and (iv) is given in Theorem 3 of [8].

We conclude by mentioning that it might be possible to alter condition (iii) of Theorem 7 somewhat. Note that $B_q \subseteq B_{q+1}$ with the injection continuous. Thus, if we set

$$B = \bigcup_{q \geq 1} B_q,$$

B may be supplied with the inductive limit topology from the $\{B_q\}$. If this inductive limit is regular (i.e., a set $A \subseteq B$ is bounded iff A is contained in some B_q and bounded in B_q), B will be sequentially complete, and, by the proof of (iii) implies (iv) above, we can replace condition (iii) with the condition

(iii') $T_n * \varphi \to 0$ in B for each $\varphi \in \mathcal{D}$.

(See the statement of Theorem 3 in [1].) One possible way of showing that the inductive limit is regular would be to show that, for each q, there is a $q' > q$ such that the injection $B_q \to B_{q'}$ is compact (see [6]); however, we have not been able to establish this.
REFERENCES

Reçu par la Rédaction le 23. 5. 1972