REMARKS ON INFINITE PRODUCTS OF FINITELY ADDITIVE MEASURES

BY

LILIANA WAJDA (WROCLAW)

The present paper contains some remarks about infinitely direct (i.e., satisfying formula (2)) products of measures. By a measure we mean here a normed (finitely) additive non-negative set function on a field of sets.

Theorem 1 of this paper has been proved by Łomnicki and Ulam (see [3], p. 256). Our proof is based on a different idea and uses the following theorem of Pettis [5] (see also Kisynski [1] and Lipecki [2]):

(i) Every strictly additive (i.e., satisfying formula (3)) non-negative set function on an additive and multiplicative family of sets can be uniquely extended to an additive non-negative set function on the ring generated by this family.

We use the following notation:

\[\underline{\mu}(Z) = \sup \{ \mu(A) \mid A \subset Z, A \in K \} \]

\[\overline{\mu}(Z) = \inf \{ \mu(A) \mid A \supset Z, A \in K \} \]

Theorem 2 will be proved with the help of the following theorem formulated by Marczewski and Łoś in [4]:

(ii) If \(K \) is a field of sets, \(\mu \) – a measure on \(K, Z \notin K \), and \([K, Z] \) denotes the field generated by \(K \) and \(Z \), then there exists a measure \(\nu \) on \([K, Z] \) such that \(\nu(Z) = \xi \), where \(\xi \) is an arbitrary value satisfying inequality \(\underline{\mu}(Z) \leq \xi \leq \overline{\mu}(Z) \).

Let \(X_i, K_i, \mu_i (i = 1, 2, \ldots) \) denote an arbitrary set, a field of sub-sets of this set and a measure on \(K_i \), respectively. Let \(\mathcal{X} \) be the family of infinite products \((A_1 \times A_2 \times \ldots) \), where \(A_i \in K_i \), for each \(i \) and \(K \) is the field of sets generated by \(\mathcal{X} \). By \(K_0 \) we denote the smallest field containing all sets of the form \((A_1 \times A_2 \times \ldots) \), where \(A_i = X_i \) for almost every \(i = 1, 2, \ldots \). Obviously, \(K_0 \subset K \). It will be also convenient to use the notation

\[\pi_k: \prod_{i=1}^{\infty} X_i \to \prod_{i=1}^{k} X_i, \text{ where } \pi_k(x_1, x_2, \ldots) = (x_1, \ldots, x_k). \]
From the axiom of choice and properties of set theoretical operations we infer the following

Lemma. For arbitrary \(A = \bigcup_{i=1}^{m} A^i \) and \(B = \bigcup_{j=1}^{n} B^j \), where \(A^i, B^j \in \mathcal{X} \), there exists \(k_0 \) such that

\[
\pi_k(A \cap B) = \pi_k A \cap \pi_k B \quad \text{for} \ k \geq k_0.
\]

It is well known that, for arbitrary measures \(\mu_i \) on fields \(K_i \), there exists a unique measure \(\mu_0 \) on \(K_0 \) such that for \((A_1 \times \ldots \times A_k \times X_{k+1} \times \ldots) \in K_0 \), where \(k = 1, 2, \ldots \), we have

\[
(1) \quad \mu_0(A_1 \times \ldots \times A_k \times X_{k+1} \times \ldots) = \mu_1(A_1) \cdots \mu_k(A_k).
\]

A stronger theorem is also true.

Theorem 1. For arbitrary (normed finitely additive) measures \(\mu_i \) on fields \(K_i \) there exists the unique measure \(\mu \) on \(K \) such that

\[
(2) \quad \mu(A_1 \times A_2 \times \ldots) = \mu_1(A_1) \mu_2(A_2) \cdots \quad \text{for every} \ A_j \in K_j.
\]

Proof. The family of sets

\[
\mathcal{X}_s = \left\{ \bigcup_{i=1}^{m} A^i \mid A^i \in \mathcal{X}, \ m = 1, 2, \ldots \right\}
\]

is additive and multiplicative, and for \(A \in \mathcal{X}_s \) the function

\[
\mu(A) = \lim_{k \to \infty} \mu_0(\pi_k^{-1} \pi_k A)
\]

is well defined on \(\mathcal{X}_s \).

In virtue of lemma, we have

\[
(3) \quad \mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B) \quad \text{for} \ A, B \in \mathcal{X}_s.
\]

By Pettis theorem (i) we extend \(\mu \) to the unique measure on the field generated by \(\mathcal{X} \). It is easy to see that \(\mu \) after extension is the unique measure satisfying (2).

We will use the following notation:

\[
K_0^0 = \left\{ A \mid A = \bigcap_{i=1}^{\infty} X_i, \ \mu_0(A) = \mu_0(A) \right\}.
\]

It is interesting to know whether and under what conditions measure \(\mu_0 \) can be uniquely extended to a measure on \(K \) satisfying (1). The answer to this question is given by

Theorem 2. There exist two different measures on \(K \) satisfying (1) if and only if

\[
(4) \quad \lim \sup \{ \sup \{ \mu_n(Z) \mid Z \in K_n, \ Z \neq X_n \} \} = 1.
\]
Proof. Sufficiency. If condition (4) is satisfied, then there exists a sequence \(\{A_i\} \) such that \(X_i = A_i \cap K_i \) and \(\mu_i(A_i) \geq 1 - 1/(k+1)^2 \) for \(i \) non belonging to the sequence \(\{i_k\} \) we put \(A_i = X_i \). Let \(A = \prod_{i=1}^{\infty} A_i \). Then \(\mu_0(A) = 0 \) and \(\overline{\mu}_0(A) \geq 1/2 \), and therefore \(A \in \mathcal{X} \setminus K_0^o \). Hence by (ii) there exist two different measures \(\nu_1 \) and \(\nu_2 \) on \(K_0^o \) which are extensions of \(\mu_0 \).

Necessity. It is easy to see that if (4) is not satisfied, then \(\overline{\mu}_0(A) = 0 \) for every \(A = A_1 \times A_2 \times \ldots \) such that \(A_i \in K_i \) and \(A_i \neq X_i \) for infinitely many \(i \). Therefore \(\mathcal{X} \subseteq K_0^o \) and, consequently, \(K \subseteq K_0^o \). It is obvious that measure \(\mu_0 \) on \(K_0 \) can be uniquely extended to a measure on \(K_0^o \).

Condition (4) is satisfied, e.g., if
(a) measures \(\mu_i \) are two-valued and \(K_i \) are not trivial,
(b) measures \(\mu_i \) vanish on singletons and \(K_i \) are not trivial,
(c) \(K_i = 2^{X_i} \) and \(X_i \) is infinite.

REFERENCES

Reçu par la Rédaction le 15. 7. 1971