On the existence of a convex solution of the functional equation \(\varphi(x) = h(x, \varphi[f(x)]) \)

by Z. Kominek and J. Matkowski (Katowice)

Abstract. In this paper we consider the functional equation \(\varphi(x) = h(x, \varphi[f(x)]) \). Under some conditions on given functions \(f \) and \(h \) we obtain the existence of a convex solution \(\varphi: (-a, a) \to \mathbb{R} \) such that \(\varphi(0) = 0 \). It is assumed that \(f(0) = 0 \).

In the present paper we consider the problem of the existence of a convex solution of the functional equation

\[
\varphi(x) = h(x, \varphi[f(x)]),
\]

where \(f \) and \(h \) are given and \(\varphi \) is an unknown function.

A real function \(\psi \) defined in a convex set \(D \subseteq \mathbb{R}^n \) is convex iff for all \(x, y \in D \) and \(\lambda \in (0, 1) \)

\[
\psi(\lambda x + (1-\lambda)y) \leq \lambda \psi(x) + (1-\lambda) \psi(y).
\]

We assume that

(i) \(f \) is increasing, convex in an interval \(I = (-a, a) \) and

\[
f(0) = 0, \quad f(x) < x \quad \text{for } 0 < x < a,
\]

(ii) \(\Omega \subseteq \mathbb{R}^2 \) is a convex set such that \((0, 0) \in \Omega \); \(h \) is increasing with respect to each variable and convex in \(\Omega \), and \(h(0, 0) = 0 \),

(iii) for every \(x \in I \), \(h(f(x), \Omega_{f(x)}) \subseteq \Omega_x \), where \(\Omega_x = \{y : (x, y) \in \Omega\} \).

Remark 1. The convexity of \(\Omega \) implies that the function \(\alpha(x) = \inf \Omega_x \) is convex in \(I \) and \(\beta(x) = \sup \Omega_x \) is concave in \(I \). Moreover, if for a certain \(x_0 \in I \) we have \(\alpha(x_0) = -\infty \), then \(\alpha(x) = -\infty \) for every \(x \in I \). Similarly, if for a \(x_0 \in I \) we have \(\beta(x_0) = +\infty \), then \(\beta = +\infty \) in \(I \).

Thus we may confine our considerations to the following two cases: \(\beta < +\infty \) and \(\beta = +\infty \).

(1) Here \(\mathbb{R}^n \) is a linear metric space with the operations and the metric \(\rho \) defined as follows. Let \(x = (x_1, \ldots, x_n), \ y = (y_1, \ldots, y_n) \in \mathbb{R}^n \), and let \(\lambda \in \mathbb{R} \). Then \(x + y = (x_1 + y_1, \ldots, x_n + y_n), \lambda x = (\lambda x_1, \ldots, \lambda x_n) \) and \(\rho(x, y) = [(x_1 - y_1)^2 + \ldots + (x_n - y_n)^2]^{1/2} \).
1. In this section we consider the simpler case: $\beta < + \infty$. We shall prove the following

Theorem 1. Suppose that Ω is closed and let conditions (i)-(iii) be fulfilled. If for a certain $x_0 \in I$ we have $\sup \Omega_{x_0} < + \infty$, then there exists at least one increasing and convex function $\varphi: I \to \mathbb{R}$ such that $\varphi(0) = 0$, fulfilling equation (1) in I.

Proof. Suppose that there exists a positive number $c \leq a$ such that

$$a(x) = \inf \Omega_x \leq 0, \quad x \in (0, c),$$

and let us put

$$q_0(x) = 0, \quad x \in (0, c).$$

Next, we define the sequence q_n by the recurrent relation

$$q_n(x) = h(x, q_{n-1}[f(x)]), \quad n = 1, 2, \ldots$$

It follows from (ii) and (iii) that $\beta(x) \geq 0$ for $x \in I$. Thus we have $a(x) \leq q_n(x) \leq \beta(x)$ for $x \in (0, c)$. This together with $f(x) < x$ yields $q_n[\varphi(x)] \in \Omega_x$ for $x \in (0, c)$. Suppose that for a certain $n \geq 1$ and for all $x \in (0, c)$ we have $q_{n-1}[f(x)] \in \Omega_x$. In view of (4) this means that q_n is well defined in $(0, c)$. Then $q_{n-1}[f^2(x)] \in \Omega_{f(x)}$ and according to (4) and (iii) we get

$$q_n[f(x)] = h[f(x), q_{n-1}[f^2(x)]] \in h[f(x), \Omega_{f(x)}] \subset \Omega_x.$$

Hence $q_n[f(x)] \in \Omega_x$ for $x \in (0, c)$. We prove by induction that $q_n[f(x)] \in \Omega_x$ for each n, and from (4) it follows that q_n is well defined in $(0, c)$ for each n. It follows from (i) and (ii) (induction) that q_n is an increasing sequence of increasing and convex functions in $(0, c)$. Since $\beta < + \infty$ (cf. Remark 1), $q_n(x)$ is bounded for every $x \in (0, c)$. Thus there exists a $\varphi(x) = \lim_{n \to \infty} q_n(x)$ for $x \in (0, c)$ and, evidently, φ is increasing and convex in $(0, c)$. Taking into account (3), (4) and (ii), we obtain $\varphi(0) = 0$. Letting $n \to \infty$ in (4), we see that φ satisfies equation (1) in $(0, c)$. Using (i), (iii) and equation (1), we can extend this solution onto the whole interval I (compare M. Kuczma (2), the proof of a theorem of Kordylewski). For simplicity we denote this extension by φ. We shall prove that φ is increasing and convex in I. Let u be the supremum of all t such that φ is increasing in $(0, t)$. For the indirect proof suppose that $u < a$. Since $f(u) < u$, it follows from the continuity of f that there exists a $u_1 > u$ such that $f(x) < u$ for $x \in (0, u_1)$. Thus, in view of (i) and (ii), we have for $0 \leq x_1 < x_2 < u_1$

$$\varphi(x_1) = h(x_1, \varphi[f(x_1)]) \leq h(x_2, \varphi[f(x_1)]) \leq h(x_2, \varphi[f(x_2)]) = \varphi(x_2),$$

i.e., \(\varphi \) is increasing in \((0, u_1) \). This contradiction completes the proof of the monotonicity of \(\varphi \) in \(I \).

Now we denote by \(u \) the supremum of all \(t \) such that \(\varphi \) is convex in \((0, t) \) and suppose that \(u < a \). Since \(f(u) < u \), it follows from the continuity of \(f \) that there exists a \(u_1 > u \) such that \(f(x) < u \) for \(x \in (0, u_1) \).

Now from the monotonicity of \(\varphi \) and from conditions (i), (ii) we have for \(0 \leq x_k < u_1, \lambda_k > 0, \lambda_1 + \lambda_2 = 1, \ k = 1, 2 \)

\[
\varphi(\lambda_1 x_1 + \lambda_2 x_2) = h(\lambda_1 x_1 + \lambda_2 x_2, \varphi[f(\lambda_1 x_1 + \lambda_2 x_2)]) \\
\leq h(\lambda_1 x_1 + \lambda_2 x_2, \varphi[f(x_1) + f(x_2)]) \\
\leq h(\lambda_1 x_1 + \lambda_2 x_2, \lambda_1 \varphi[f(x_1)] + \lambda_2 \varphi[f(x_2)]) \\
\leq \lambda_1 h(x_1, \varphi[f(x_1)]) + \lambda_2 h(x_2, \varphi[f(x_2)]) \\
= \lambda_1 \varphi(x_1) + \lambda_2 \varphi(x_2).
\]

Thus \(\varphi \) is convex in \((0, u_1) \). This contradiction proves that we must have \(u = a \), or that \(\varphi \) is convex in \(I \).

2° Now, suppose that there is no a \(\epsilon > 0 \) such that (2) holds. Then according to the convexity of \(\Omega \), the function \(a(x) = \inf \Omega_x \) has the following properties (cf. Remark 1):

(5) \[a(0) = 0, \quad a \text{ is increasing and convex in } I. \]

We define

(6) \[\varphi_0(x) = a(x), \quad x \in I. \]

Using (i)-(iii), it is easy to verify (induction) that the sequence (4) with \(\varphi_0 \) defined above is well defined for \(x \in I \) and forms an increasing sequence of increasing and convex functions in \(I \) and such that \(\varphi_n(0) = 0 \). Moreover, \(\varphi_n(x) \leq \beta[f^{-1}(x)] < \infty \) for \(x \in I \). Thus, the function \(\varphi(x) = \lim_{n \to \infty} \varphi_n(x) \) for \(x \in I \) is increasing, convex, fulfills equation (1) in \(I \) and condition \(\varphi(0) = 0 \). This completes the proof.

2. In this section we assume that

(iv) for every \(x \in I \), \(\sup \Omega_x = +\infty \) and there exists a \(\delta > 0 \) such that \(\inf \Omega_x \leq 0 \) for \(x \in (0, \delta) \).

It follows from (ii) and (iv) that there exist partial derivatives:

\[
\frac{h_0'(0+, 0)}{x} = \lim_{x \to 0^+} \frac{h(x, 0)}{x}, \quad \frac{h_0'(0, 0+)}{y} = \lim_{y \to 0^+} \frac{h(0, y)}{y}.
\]

By (i) we have

\[
f'(0+) = \lim_{x \to 0^+} \frac{f(x)}{x}.
\]

We shall prove the following result.
THEOREM 2. Let conditions (i)-(iv) be fulfilled. If

\[f'(0+)h'_\varphi(0, 0+) < 1, \]

then there exists an increasing and convex function \(\varphi : I \to R \), fulfilling equation (1) in \(I \) and condition \(\varphi(0) = 0 \).

Proof. For an \(\varepsilon > 0 \) we denote

\[k = h'_z(0+, 0+) + \varepsilon, \quad l = h'_\varphi(0, 0+) + \varepsilon, \quad s = f'(0+) + \varepsilon. \]

In view of (7) we can choose the \(\varepsilon > 0 \) so small that

\[sl < 1. \]

It follows from (i) and (ii) that there exists a \(b, 0 < b < \delta \), such that

\[h(x, y) \leq kx + ly, \quad x, y \in (0, b) \]

and

\[f(x) \leq sx, \quad x \in (0, b). \]

Let us put

\[m = k(1-sl)^{-1}, \]

\[c = \min(b, bm^{-1}) \]

and denote by \(D \) the set

\[D = \{(x, y) : 0 \leq x \leq c, \ 0 \leq y \leq mx\}. \]

It follows from (12) that \(D \subset \Omega \). Let \(D_x = \{y: (x, y) \in D\} \). Evidently, \(D_x = (0, mx) \). We shall show that

\[h(f(x), D_{f(x)}) \subset D_x, \quad x \in (0, c). \]

Take \(y \in D_{f(x)} = (0, mf(x)) \). Then by (ii), (9), (i), (10) and (11) we obtain

\[0 \leq h(f(x), y) \leq kf(x) + ly \leq kx + lmf(x) \leq (k + slm)x = mx \]

and (13) has been proved. Evidently, \(D \) is closed and convex. If we put \(\Omega = D \), then all the assumptions of Theorem 1 will be fulfilled. Thus there exists an increasing and convex function \(\varphi : (0, c) \to R \), fulfilling equation (1) in \((0, c) \) and condition \(\varphi(0) = 0 \). This solution has a unique extension onto the whole interval \(I \), which may easily be obtained by using (iii) and equation (1) (compare M. Kuczma (4)). A similar argument as in Theorem 1 proves that this extension is increasing and convex in \(I \). This completes the proof.

Reçu par la Rédaction le 29. 7. 1970