TWO SUFFICIENT CONDITIONS FOR THE MACLANE CLASS \(\mathcal{A} \)

BY

G. P. KAPOOR (SHAMLI, INDIA)

Let \(\mathcal{A} \) be the MacLane class of non-constant functions which are analytic in \(|z| < 1 \) and have asymptotic values in a dense set of points of \(|z|^\prime = 1 \). MacLane [3], p. 46, showed that if

\[
M(r, f) = \sup_{|z| = r} |f(z)| \quad (0 < r < 1)
\]

for a non-constant function \(f(z) \) analytic in \(|z| < 1 \), then

\[
\int_{0}^{1} (1 - r) \log^{+} M(r, f) dr < \infty
\]

is sufficient to guarantee \(f(z) \in \mathcal{A} \). MacLane [3], p. 51, further proved that if

\[
f(z) = \sum_{n=0}^{\infty} a_{n} z^{n}
\]

is such that, for some \(\lambda \) \((0 < \lambda < \frac{1}{3})\),

\[
\log^{+} |a_{n}| < n^{\lambda} \quad (n > n_{0}),
\]

then \(f(z) \in \mathcal{A} \). Thus, if order \(\varrho \) of \(f(z) \), defined as

\[
\varrho = \limsup_{r \to 1, r < 1} \frac{\log^{+} \log^{+} M(r, f)}{-\log(1 - r)},
\]

satisfies \(0 < \varrho < 2 \), then \(f(z) \in \mathcal{A} \).

Hornblower [2] weakened condition (1) and showed that if \(f(z) \) is non-constant analytic in \(|z| < 1 \) such that

\[
\int_{0}^{1} \log^{+} \log^{+} M(r, f) dr < \infty,
\]

then \(f(z) \in \mathcal{A} \).
The purpose of the present paper is to weaken (2) and to obtain a sufficient condition on \(|a_n/a_{n-1}|\) such that

\[f(z) = \sum_{n=0}^{\infty} a_n z^{\lambda_n} \quad (a_n \neq 0 \text{ for all } n) \]

is in the class \(\mathcal{A}\).

Our results imply that all non-constant functions, analytic in \(|z| < 1\) and having finite order, are in the class \(\mathcal{A}\). Further, we construct an example to show that there are functions of infinite order which also belong to the class \(\mathcal{A}\).

Lemma 1. Let \(f(z)\) be analytic and non-constant in \(|z| < 1\) and let

\[M(r,f) = \sup_{|z|=r} |f(z)|. \]

If, for some \(a\) \((1 < a < \infty)\),

\[\log^+ \log^+ M(r,f) = O\left\{(1-r)^{-1} \left(\log \frac{e}{1-r}\right)^{-a}\right\} \quad \text{as } r \to 1, \]

then \(f(z) \in \mathcal{A}\).

Proof. It is easily seen that the hypothesis of the lemma implies

\[\int_0^1 \log^+ \log^+ M(r,f) \, dr < \infty. \]

Therefore \(f(z) \in \mathcal{A}\) now follows from Hornblower's result ([2], Theorem 1).

Theorem 1. Let

\[f(z) = \sum_{n=0}^{\infty} a_n z^{\lambda_n} \quad (|z| < 1) \]

be a non-constant function. If, for some \(\beta\) \((1 < \beta < \infty)\),

\[\log^+ |a_n| = O \{\lambda_n (\log \lambda_n)^{-1} (\log \log \lambda_n)^{-\beta}\} \quad \text{as } n \to \infty, \]

then \(f(z) \in \mathcal{A}\).

Proof. Let us first observe that condition (4) implies that \(f(z)\) is analytic in \(|z| < 1\) and that there exist positive finite constants \(B\) and \(S\) such that, for all \(n > S\),

\[\log^+ |a_n| < B \lambda_n (\log \lambda_n)^{-1} (\log \log \lambda_n)^{-\beta}. \]

We write

\[M(r,f) \leq \sum_{n=0}^{\infty} |a_n|r^{\lambda_n} = \sum_{n=0}^{S} |a_n|r^{\lambda_n} + \sum_{n=S+1}^{N} |a_n|r^{\lambda_n} + \sum_{n=N+1}^{\infty} |a_n|r^{\lambda_n}, \]

where
where

\[N = \left[\exp \left(\exp \left(\frac{1}{2B} \log \frac{1}{r} \right)^{-1/(\beta+1)} \right) \right]. \]

It follows that

\[\sum_{n=N+1}^{\infty} |a_n| r^n = o(1) \quad \text{as} \quad r \to 1, \]

for

\[\sum_{n=N+1}^{\infty} |a_n| r^n < \sum_{n=N+1}^{\infty} \exp \{ B \lambda_n (\log \lambda_n)^{-1} (\log \log \lambda_n)^{-\beta} \} r^n \]

\[\leq \sum_{n=N+1}^{\infty} \frac{r^{n/2}}{1 - r^{1/2}}, \]

and \(r^{(N+1)/2} (1 - r^{1/2}) \to 0 \) as \(r \to 1 \) in view of the estimate

\[1 - r = \left(\log \frac{1}{r} \right) \left(1 + O \left(\log \frac{1}{r} \right) \right) \]

for the values of \(r \) sufficiently close to 1. Thus, by (5), for all \(r \) satisfying \(r_0 < r < 1 \),

\[M(r, f) < c(S) + N \max_{n \geq 0} \left\{ \exp \{ B \lambda_n (\log \lambda_n)^{-1} (\log \log \lambda_n)^{-\beta} \} r^n \right\} + o(1), \]

where \(c(S) \) is a constant depending on \(S \). Now, let

\[g(x, r) = Bx (\log x)^{-1} (\log \log x)^{-\beta} + x \log r. \]

The maximum value of \(g(x, r) \) occurs at the point \(x = x_0 \equiv x_0(r) \) satisfying the equation

\[B (\log x)^{-1} (\log \log x)^{-\beta} \{ 1 - (\log x)^{-1} - B \beta (\log x)^{-1} (\log \log x)^{-1} \} = \log \frac{1}{r}. \]

It is easily seen that \(x_0(r) \to \infty \) as \(r \to 1 \), so that, for all \(r \) satisfying \(r_1 < r < 1 \) we have

\[x_0(r) = \exp \left\{ (1 + o(1)) B \left(\log \frac{1}{r} \right)^{-1} \left(-\log \log \frac{1}{r} \right)^{-\beta} \right\}. \]

Thus, by (7),

\[g(x, r) \leq B x_0 (\log x_0)^{-1} (\log \log x_0)^{-\beta} \{ 1 + B \beta (\log \log x_0)^{-1} \}. \]
Using the estimate of $x_0(r)$, this estimate of $g(x, r)$ yields
\[
\log g(x, r) \leq \log x_0 + o(1)
\]
\[
= B(1 + o(1)) \left(\log \frac{1}{r} \right)^{-1} \left(-\log \log \frac{1}{r} \right)^{-\beta} + o(1)
\]
for all values of r sufficiently close to 1. Now it follows from (6) that, as $r \to 1$,
\[
\log^+ M(r, f) \leq \log N + \exp \left\{ B(1 + o(1)) \left(\log \frac{1}{r} \right)^{-1} \left(-\log \log \frac{1}{r} \right)^{-\beta} + o(1) \right\} + o(1) \leq \exp \left(\frac{1}{2B} \log \frac{1}{r} \right)^{-1} + o(1) \leq \exp \left\{ B(1 + o(1)) \left(\log \frac{1}{r} \right)^{-1} \left(-\log \log \frac{1}{r} \right)^{-\beta} + o(1) \right\} + o(1)
\]
\[
= (1 + o(1)) \exp \left\{ B(1 + o(1)) \left(\log \frac{1}{r} \right)^{-1} \left(-\log \log \frac{1}{r} \right)^{-\beta} + o(1) \right\}.
\]

Since the right-hand side expression in this inequality is a positive quantity, we have, as $r \to 1$,
\[
\log^+ \log^+ M(r, f) \leq B(1 + o(1)) \left(\log \frac{1}{r} \right)^{-1} \left(-\log \log \frac{1}{r} \right)^{-\beta} + o(1)
\]
\[
= O \left\{ \left(\log \frac{1}{r} \right)^{-1} \left(-\log \log \frac{1}{r} \right)^{-\beta} \right\} = O \left\{ (1 - r)^{-1} \left(\log \frac{e}{1-r} \right)^{-\beta} \right\}.
\]

Thus, by Lemma 1, $f(z) \in \mathcal{A}$ and the proof of Theorem 1 is complete.

Remark. Since condition (4) follows from MacLane's condition (2), Theorem 1 provides an improvement to MacLane's result (see [3], p. 51). Further, if
\[
f(z) = \sum_{n=0}^{\infty} a_n z^n
\]
is analytic in $|z| < 1$ and has order ρ, then proceeding on the lines of Beuermann [1] or MacLane [3] (p. 47) it is not difficult to prove that
\[
ex = \limsup_{n \to \infty} \frac{\log^+ \log^+ |a_n|}{\log \lambda_n}.
\]

It is clear from (8) that, for functions of finite order, condition (4) is satisfied for any $\beta > 1$. Thus, by Theorem 1, all non-constant functions, analytic in $|z| < 1$ and having finite order, are in \mathcal{A}. The same conclusion also follows by Horneblower's result, since a function analytic in $|z| < 1$ and having finite order satisfies (3).
An example of a function in the class \mathcal{A} having infinite order can easily be constructed by help of Theorem 1. Indeed, consider the function

$$g(z) = \sum_{n=0}^{\infty} \exp\left(\lambda_n \left(\log \lambda_n\right)^{-3}\right) z^n,$$

where $\lambda_0 = 0$ and $\{\lambda_n\}_{n=1}^{\infty}$ is an increasing sequence of positive integers. Since (4) is satisfied, we infer that $g(z)$ is in the class \mathcal{A}, and, by (8), the order of $g(z)$ is infinite.

Let us observe that whereas Theorem 1 provides an example of a function of infinite order in the class \mathcal{A} in terms of a Gap Taylor series, such examples in the closed form can easily be constructed with the use of Hornblower's result. Indeed, the function

$$h(z) = \exp\left(\exp\left(1 - z^{-a}\right)^{-a}\right) \quad (0 < a < 1)$$

is in the class \mathcal{A} in view of (3), and it can easily be seen that the order of $h(z)$ is infinite.

Lemma 2. Let

$$f(z) = \sum_{n=0}^{\infty} a_n z^n$$

be a non-constant function analytic in $|z| < 1$ and of order ϱ. If

$$\psi(n) = \dfrac{a_n}{a_{n+1}} \geq \frac{1}{e} \quad \text{for all } n > n_0,$$

then

$$1 + \varrho \leq \max(1, \theta),$$

where

$$\theta = \limsup_{n \to \infty} \frac{\log \lambda_n}{\log((\lambda_n - \lambda_{n-1})/\log|a_n/a_{n-1}|)}.$$

Proof. The condition $\psi(n) \geq 1/e$ for all $n > n_0$ implies $0 \leq \theta \leq \infty$. Let $\theta < \infty$. For any δ such that $\theta < \delta < \infty$ we have, for all $n > N = N(\delta)$,

$$\log^+ \left| \dfrac{a_n}{a_{n-1}} \right| < (\lambda_n - \lambda_{n-1}) \lambda_n^{-1/\delta}.$$

Therefore, if $n > \max(N, n_0)$, then

$$\log|a_n| < \log|a_N| + (\lambda_{N+1} - \lambda_N) \lambda_{N+1}^{-1/\delta} + \ldots + (\lambda_n - \lambda_{n-1}) \lambda_n^{-1/\delta}$$

$$= \log|a_N| + \lambda_n^{(\theta-1)/\delta} - \sum_{m=N+1}^{n-1} \lambda_m (\lambda_{m-1}^{1/\delta} - \lambda_m^{-1/\delta}) - \lambda_N \lambda_{N+1}^{-1/\delta}$$

$$= \log|a_N| + \lambda_n^{(\theta-1)/\delta} - \int_{\lambda_{N+1}}^{\lambda_n} n(t) d(t^{-1/\delta}) - \lambda_N \lambda_{N+1}^{-1/\delta},$$

where $n(t) = \lambda_m$ for $\lambda_m < t \leq \lambda_{m+1}$ and $m = N+1, \ldots, n-1.$
Since
\[\int_{\lambda_{n+1}}^{\lambda_n} n(t) \, dt \, t^{-1/\delta} > - \frac{1}{\delta} \int_{\lambda_{n+1}}^{\lambda_n} t^{-1/\delta} \, dt = - \frac{1}{\delta-1} \{ \lambda_n^{(\delta-1)/\delta} - \lambda_{n+1}^{(\delta-1)/\delta} \}, \]
equation (10), for sufficiently large values of \(n \), gives
\[\log |a_n| < \log |a_N| + \frac{\delta}{\delta-1} \lambda_n^{(\delta-1)/\delta} - \frac{1}{\delta-1} \lambda_{n+1}^{(\delta-1)/\delta} - \lambda_N \lambda_{n+1}^{(\delta-1)/\delta}. \]

If \(\theta < \delta < 1 \), then (11) and (8) imply \(\epsilon = 0 \), and so (9) obviously holds. Hence, suppose that \(1 \leq \theta < \delta < \infty \). It follows from (11) that, for sufficiently large values of \(n \),
\[\log^+ \log^+ |a_n| < \frac{\delta-1}{\delta} \log \lambda_n + o(1), \]
which, in view of (8), implies the inequality
\[\frac{\epsilon}{1+\epsilon} \leq \frac{\delta-1}{\delta}. \]

Since this inequality holds for every \(\delta > \theta \), we have
\[\frac{\epsilon}{1+\epsilon} \leq \frac{\theta-1}{\theta}, \]
and so \(1+\epsilon \leq \theta \). This completes the proof.

Theorem 2. Let
\[f(z) = \sum_{n=0}^{\infty} a_n z^n \]
be a non-constant function. If, for some \(\eta \) \((0 < \eta < \infty) \),
\[\log^+ \left| \frac{a_n}{a_{n-1}} \right| = O((\lambda_n - \lambda_{n-1})\lambda_n^{-\eta}) \quad \text{as} \quad n \to \infty, \]
then \(f(z) \in \mathcal{A} \).

Proof. It is easily seen that \(f(z) \) is analytic in \(|z| < 1 \). In view of Lemma 2, condition (12) on \(|a_n|/|a_{n-1}| \) implies that \(f(z) \) is of finite order. The assertion \(f(z) \in \mathcal{A} \) now follows from the remark following Theorem 1.

References

DEPARTMENT OF MATHEMATICS
V. V. POSTGRADUATE COLLEGE
MEERUT UNIVERSITY
SHAMLI (MUZAFFARNAGAR), U. P.
INDIA

Reçu par la Rédaction le 23. 8. 1975