J. ODERFELD i E. PLESZCZYŃSKA (Warszawa)

PEWNE ZASTOSOWANIA PARTYCJI

1. Uwagi wstępne. Niech X będzie zbiorem liczb całkowitych, nieujemnych, który może spełniać pewne dodatkowe warunki; a niech będzie liczbą całkowitą nieujemną.

Partycją liczby a nazywamy przedstawienie a w postaci $\sum a_i$, gdzie $a_i \in X$, przy czym porządek dodawania jest obojętny, powtórzenia składników są dozwolone, liczba składników może być ustalona lub nie ustalona.

Od czasu Eulera wielu autorów zajmowało się liczbą partycji przy różnych założeniach szczegółowych. Obszerny przegląd takich prac można znaleźć na przykład w [1] i [2].

W zastosowaniach, o których będzie mowa w niniejszej pracy, przyjmujemy zespół założeń (I):

X jest zbiorem liczb całkowitych, nieujemnych, $x_i \in X$,

$$a_i \leq c,$$

$$\sum_{i=1}^{b} x_i = a,$$

gdzie a i c są ustalonymi liczbami całkowitymi, nieujemnymi, b jest ustaloną liczbą naturalną.

Liczbę partycji przy założeniach (I) będziemy oznaczali przez $p(a, b; c)$.

Usuwając teraz z założeń (I) warunek, że $a_i \leq c$, otrzymujemy inny zespół założeń (II); odpowiednią liczbę partycji oznaczamy przez $p(a, b)$. Oczywiście

$$p(a, b; c) = p(a, b) \quad \text{dla} \quad c \geq a.$$

Dla wygody wprowadzimy jeszcze dwie umowy

$$p(a, 0; c) = 1,$$

$$p(a, b) = 0 \quad \text{dla} \quad a < 0.$$
Jak wiadomo (por. np. [2]), metodą funkcji tworzącej otrzymuje się związek

\[p(a, b) = \sum_{k=0}^{a} p(a-\lambda b, b-1). \]

Jest to wzór rekurencyjny, z którego można obliczać \(p(a, b) \) pamiętając, że

\[p(a, 1) = 1 \]
\[p(a, 2) = \left\lceil \frac{a}{2} \right\rceil + 1. \]

Dowody są trywialne.

Dla \(p(a, b; c) \) nie znaleźliśmy w dostępnych nam źródłach wzoru rekurencyjnego. Wyprowadzamy go w rozdziale 2 metodą kombinatoryczną; jako przypadek szczególny otrzymuje się nowy wzór rekurencyjny dla \(p(a, b) \). W rozdziale 3 podajemy kilka wzorów roboczych ścisłych, w rozdziale 4 zajmujemy się wzorami asymptotycznymi. Wreszcie w rozdziale 5 podajemy zastosowania mechaniczne i probabilistyczne.

2. Wzory rekurencyjne dla \(p(a, b; c) \) oraz \(p(a, b) \).

Przypadek 1: \(b = 1 \)

Jeśli \(c \geq a \), istnieje jedna partycja, jeśli \(c < a \), to założenia (I) są sprzeczne. Wskutek tego

\[p(a, 1; c) = \begin{cases} 0 & \text{dla } c < a, \\ 1 & \text{dla } c \geq a. \end{cases} \]

Przypadek 2: \(b = 2 \)

Zgodnie z założeniami (I) \(x_1 + x_2 = a \). Niech \(x_1 < x_2 \); wtedy \(x_2 \geq a/2 \). Jednocześnie \(x_1 \leq c \).

Jeśli \(c < a/2 \), to ostatnie dwie nierówności są sprzeczne.

Partycji jest tyle, ile jest liczb naturalnych na domkniętym odcinku

\((a/2, c) \), gdy \(a/2 < c < a \),

lub

\((a/2, a) \), gdy \(c \geq a \).

Stąd

\[p(a, 2; c) = \begin{cases} 0 & \text{dla } c < a/2, \\ \lfloor c - a/2 \rfloor + 1 & \text{dla } a/2 \leq c < a, \\ \lfloor a/2 \rfloor + 1 & \text{dla } c \geq a. \end{cases} \]
Przypadek 3: $b > 2$
Ze składników wszystkich możliwych partyj tworzymy macierz o b kolumnach porządkując je niemalące: $x_1 \leq x_2 \leq \ldots \leq x_b$; suma każdego wiersza jest a, nie powtarzamy wierszy różniących się tylko porządkiem wyrazów.

Liczba wierszy macierzy, w których $x_b \leq c$, jest $p(a, b; c)$.

Oznaczmy dla krótkości

\[x_{b-2} = i, \quad \sum_{j=1}^{b-3} x_j = k. \]

Zachodzi relacja

\[0 \leq i \leq \lfloor a/3 \rfloor. \]

Górny kres odpowiada przypadkowi, gdy $x_b = x_{b-1} = i$.
Dla wszelkiej ustalonej wartości i mamy

\[0 \leq k \leq (b-3)i. \]

Górny kres odpowiada przypadkowi, gdy $x_1 = x_2 = \ldots = x_{b-3} = i$.
Teraz znajdziemy liczbę $S(k, i)$ par uporządkowanych (x_{b-1}, x_b) dla ustalonych wartości k, i. Gdyby nie było warunku uporządkowania wyrazów w wierszu i warunku nieprzekraczania c, to liczba ta równała się $p(a - k - i, 2)$. Należy jednak odliczyć te wszystkie partyjce, dla których

\[x_{b-1} < i \quad \text{lub} \quad x_{b-1} > c, \]

bądź też

\[x_b > c \quad \text{czyli} \quad x_{b-1} < a - k - i - c. \]

Łącząc (12) i (13) znajdujemy

\[x_{b-1} < \max(i, a - c - k - i). \]

Z samego znaczenia $S(k, i)$ wynika, że $S(k, i)$ powinno być nie mniejsze od jedności. Jeśli ten warunek jest spełniony, to każdej wartości x_{b-1} odpowiada, przy ustalonych k, i, dokładnie jedna partyjca. Wskutek tego

\[S(k, i) = \begin{cases} p(a - k - i, 2) - \max(i, a - c - k - i) & \text{dla } a - k - i \leq 2c, \\ 0 & \text{poza tym}. \end{cases} \]

Ponieważ dla każdej parę k, i suma $b-3$ wyrazów jest k i żaden wyraz nie przekracza i, więc w pierwszych $b-3$ kolumnach liczba partyjec jest $p(k, b-3; i)$. Wskutek tego ostatecznie

\[p(a, b; c) = \sum_{i=0}^{\lfloor a/3 \rfloor} \sum_{k=0}^{b-3} S(k, i) p(k, b-3; i). \]
W przypadku szczególnym, gdy \(e \geq a \), mamy uwzględniając (6)
\[
p(a-k-i, 2) - \max(i, a-i-k-i) = p(a-k-i, 2) - i = \left\lfloor \frac{a-k-i}{2} \right\rfloor + 1 - i = p(a-k-3i, 2),
\]
a więc, wobec (1)
\[
(17) \quad p(a, b) = \sum_{i=0}^{[a/2]} \sum_{k=0}^{(b-3)i} p(a-k-3i, 2) p(k, b-3; i).
\]

Wzór (17) ma postać bardziej skomplikowaną niż (4), jednakże w niektórych przypadkach jest praktyczniejszy w użyciu.

Rozpatrzmy jeszcze jeden przypadek szczególny, mianowicie gdy \(e \geq a/2 \). Wtedy w macierzy zbudowanej według zasad wymienionych poprzednio, w tych wierszach gdzie \(x_b \geq e \), jest \(x_{b-1} \leq e \). Łatwo zatem można udowodnić związek
\[
(18) \quad p(a, b; e) = p(a, b) - \sum_{x_b=e+1}^{a} p(a-x_b, b-1) (e \geq a/2).
\]

3. Wzory robocze na \(p(a, b) \) dla \(b = 3, 4, 5, 6 \). Dla wygody podamy najpierw tablice wartości \(p(a, 2; e) \) oraz \(p(a, 3; e) \). Obliczamy je odpowiednio z (8) i (16), przy czym dla \(b = 3 \) wzór (16) przechodzi w
\[
(19) \quad p(a, 3; e) = \sum_{i=0}^{[a/3]} p(a-i, 2) - \max(i, a-i).\]

Tablica 1. Wartości \(p(a, 2; e) \)

| \(a \) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

...
Tablica 2. Wartości \(p(a, 3; c) \)

| \(a \mid c \) | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ...
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>...</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>...</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>...</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>6</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
</tr>
</tbody>
</table>

Dla \(b = 3, 4, 5, 6 \) wzór (17) przyjmuje następujące postacie:

\[
\begin{align*}
(20) & \quad p(a, 3) = \sum_{i=0}^{[a/3]} p(a-3i, 2), \\
(21) & \quad p(a, 4) = \sum_{i=0}^{[a/3]} \sum_{k=0}^{i} p(a-3i-k, 2), \\
(22) & \quad p(a, 5) = \sum_{i=0}^{[a/3]} \sum_{k=0}^{2i} p(a-3i-k, 2)p(k, 2; i), \\
(23) & \quad p(a, 6) = \sum_{i=0}^{[a/3]} \sum_{k=0}^{3i} p(a-3i-k, 2)p(k, 3; i).
\end{align*}
\]

Przykład stosowania pokażemy dla \(p(17, 5) \). Z wzoru (22) mamy

\[
p(17, 5) = \sum_{i=0}^{5} \sum_{k=0}^{2i} \left[\frac{19-3i-k}{2} \right] p(k, 2; i),
\]

przy czym wartości \(p(k, 2; i) \) można odczytać z tablicy 1. Obszar sumowania obejmuje pary \(k, i \) spełniające nierówności

\[
0 \leq i \leq 5, \quad 0 \leq k \leq 2i, \quad k + 3i \leq 17.
\]

Trzecia nierówność pochodzi stąd, że tylko przy jej spełnieniu \(\left[\frac{19-3i-k}{2} \right] > 0 \). Wygodnie jest ująć całość rachunków w schemat, jak w tablicy 3.
Po przemnożeniu liczb w oczkach tablicy i dodaniu iloczynów znajdujemy $p(17, 5) = 119$.

4. Wyrażenia asymptotyczne. W niektórych zastosowaniach użyteczna jest przybliżona liczba partyjcy. Bardzo prosty sposób na tworzenie wzorów asymptotycznych pokazujemy na przykładowie wzoru (21).

Otoż $p(a - 3i - k, 2) = \left(\frac{a-3i-k}{2} + \frac{3}{4}\right) \pm \frac{1}{4}$, gdzie znak plus stosuje się, gdy $a-3i-k$ jest parzyste, a znak minus, gdy jest nieparzyste.

Jeśli a jest duże, to liczba wartości $p(a - 3i - k, 2)$ na brzegu obszaru sumowania we wzorze (21) jest mała w porównaniu z liczbą wartości we wnętrzu obszaru. Ponieważ zaś dla ustalonego k wyrażenie $a - 3i - k$ staje się kolejno parzyste i nieparzyste, gdy i przebiega zbiór liczb całkowitych, więc przyjmując

$$p(a - 3i - k, 2) = \frac{a-3i-k}{2} + \frac{3}{4}$$

popełniamy błąd względny malejący do zera, gdy $a \to \infty$. Wskutek tego

$$p(a, 4) \approx \sum_{i=0}^{[a/3]} \sum_{k=0}^{i} \left(\frac{a}{2} + \frac{3}{4} - \frac{k+3i}{2}
ight).$$

Po wykonaniu wskazanych działań znajdujemy ostatecznie

$$(24) \quad p(a, 4) \approx \left(\left\lfloor\frac{a}{3}\right\rfloor + 1\right) \left\{\frac{a}{2} + \frac{3}{4} + \left\lfloor\frac{a}{3}\right\rfloor \left(\frac{a}{4} - \frac{19}{24}\right) - \frac{7}{12} \left\lfloor\frac{a}{3}\right\rfloor^2\right\}. $$

W tablicy 4 porównaliśmy kilka wartości $p(a, 4)$ sceptycznych i przybliżonych.

<table>
<thead>
<tr>
<th>Wartości $p(a, 4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>ścisłe (21)</td>
</tr>
<tr>
<td>w przybliżeniu (24)</td>
</tr>
</tbody>
</table>

Podobnie możemy na przykład otrzymać $z (20)$

$$p(a, 3) \cong \left(\left[\frac{a}{3}\right] + 1\right) \left(1 + \frac{3}{4} - \frac{3}{4} \left[\frac{a}{3}\right]\right),$$

a z (18) i (25)

$$p(a, 4) - p(a, 4; c - 1) \cong $$

$$\cong \frac{(a-c+1)((a+2)(a+4) - (a+3)(a+c))}{12} + $$

$$+ \frac{a(a+1)(2a+1) - c(c-1)(2c-1)}{72},$$

dla $c \geq \frac{a}{2} + 1$.

Zastosowanie wzorów (24) i (26) pokażemy w rozdziale 5.

5. Zastosowanie. Jako pierwszy przykład rozpatrzmy zagadnienie ze struktury mechanizmów. Nie wchodząc w szczegóły techniczne podamy, że każdy mechanizm można (por. [3]) podzielić na obwody, a każdy obwód na gałęzie, złożone z członów (por. schemat na rysunku 1).

![Rys. 1](attachment:ZM-366.png)

Niech oznaczają:

- a — łączną liczbę członów w obwodzie,
- b — liczbę gałęzi w obwodzie.

Jeśli uważamy za identyczne dwa obwody różniące się tylko przestawieniem liczb członów w gałęziach i jeśli uwzględniamy również obwody zdegenerowane, o zerowej liczbie członów w niektórych gałęziach, to wszystkich możliwych obwodów jest dokładnie $p(a, b)$.

Jeśli największa liczba dozwolonych członów w gałęzi jest c, to wszystkich możliwych obwodów jest dokładnie $p(a, b; c)$. W [3] przyto-
czono wzór na \(p(a, 2) \); oczywiście można by zastosować całość rozdziałów 2, 3, 4 mniejszej pracy.

Z kolei parę słów o zastosowaniach probabilistycznych.

Wprowadzamy zmienną losową \(\xi \) zdefiniowaną jako wektor \(b \)-wy- miarowy taki, że realizacjami jego \(b \) współrzędnych są partie je spełniające założenia (II). Przyjmijmy ponadto hipotezę \(H_0 \), że dla ustalonych \(a, b \) jest jednakowe prawdopodobieństwo każdej partycji. Zajmowanie się hipotезą \(H_0 \) ma, naszym zdaniem, sens w dwóch przypadkach:

1° gdy z pożamatematycznej wiedzy o badanym zjawisku wynika, że należyłoby spodziewać się jednakowego prawdopodobieństwa partycji;

2° gdy o badanym zjawisku wiemy tak mało, że hipoteza \(H_0 \) jest równie rozsądna jak inne hipotezy konkurencyjne.

Niech \(C \) będzie zmienną losową jednowymiarową której realizacjami są największe współrzędne w realizacjach wektora \(\xi \). Prawdopodobieństwo, że \(C \geq c \) wyraża się w postaci

\[
Pr(C \geq c) = \frac{p(a, b) - p(a, b; c-1)}{p(a, b)}.
\]

Za pomocą (27) możemy testować hipotezę o jednakowym prawdopodobieństwie partycji. Będziemy ją odrzucać na poziomie istotności \(\alpha \), gdy \(Pr(C \geq c) < \alpha \), gdzie \(c \) oznacza zaobserwowaną realizację zmiennej losowej \(C \).

Zaproponowany test, który opiera się na badaniu największego składnika partycji, może być użyteczny w tych przypadkach, gdy dysponujemy tylko danymi o wartości tego składnika. Oczywiście test ma małą moc, jak zresztą większość testów nieparametrycznych. Można by ją nieco zwiększyć przez pełniejsze wykorzystanie informacji, na przykład przez dodatkowe rejestrowanie drugiego składnika po największym.

A oto przykład stosowalności testu:

Analizujemy budżety rodzin 4-osobowych mających 32 tysiące złotych rocznie przychodu, przy czym wszystkie sumy występujące w analizie są zaokrąglone do tysiąca złotych. Interesujemy się udziałem członków rodziny w przychody, a dysponujemy tylko zarejestrowanymi danymi o przychodzi najwięcej zarabiającego członka rodziny. Nie mamy wyraźnej koncepcji ekonomicznej, która by świadczyła a priori za hipotezą równego udziału wszystkich członków rodziny w przychodzie, za hipotezą jedynego żywiciela, lub za jakąś pośrednią. W tej sytuacji nie jest nierozsądne testować hipotezę równie prawdopodobnych partycji o parametrach \(a = 32, b = 4 \).

(1) Na oznaczenie prawdopodobieństwa używamy tu symbolu \(Pr \), gdyż zwykle stosowany symbol \(p \) wykorzystaliśmy dla liczby partycji.
Prace cytowane

Pewne zastosowania partycji

Praca wpłynęła 23. 8. 1960

J. ODERFELD и E. PLESZCZYŃSKA (Warszawa)

НЕКОТОРЫЕ ПРИЛОЖЕНИЯ РАЗЛОЖЕНИЙ ЧИСЛА НА СУММУ

РЕЗЮМЕ

Через \(p(a, b; c) \) обозначим число всех разложений числа \(a \) на сумму виду
\[
\sum_{r=1}^{b} x_r, \quad \text{где } a, c \text{ и } x_r < c \text{ — цепые неотрицательные числа, } b \text{ — натуральное число; порядок слагаемых не учитывается. Для числа разложении } p(a, b; c) \text{ дается вывод рекуррентной формулы (16). Отбрасывая требование } x_r < c, \text{ получаем известные разложения Эйлера, число которых } p(a, b) \text{ можно найти по формуле (17), являющейся частным случаем формулы (16). В некоторых случаях формула (17) удобнее формулы Эйлера. Формула (18) позволяет легко вычислить } p(a, b; c) \text{ для } c > a/2. \]

После вывода нескольких дальнейших точных и асимптотических формул, строим одномерный непараметрический критерий для проверки статистических гипотез; критерий получается путем рандомизации, где появляются числа разложенный (ф-ла (26)). Приводим также двухмерный вариант критерия, который несколько мощнее предыдущего. Другим приложением найденных формул является теория структур межпомоин.

ON SOME APPLICATION OF PARTITIONS

SUMMARY

We denote by \(p(a, b; c) \) the number of partitions, i.e. representations of the number \(a \) in the form \(\sum_{r=1}^{b} x_r \), where \(a, c \) and \(x_r < c \) are nonnegative integers, \(b \) is a positive integer, and the order of summation is irrelevant. We derive the recursive formula (16) for the number of partitions \(p(a, b; c) \). Deleting the condition \(x_r < c \) we obtain the well-known Euler’s formula for partitions, whose number \(p(a, b) \) may
be found from formula (17), which is a special case of (16); in some instances formula (17) is more convenient than that of Euler. Formula (18) allows us to compute easily \(p(a, b; c) \) for \(c > a/2 \).

After deriving some other auxiliary formulas, exact as well as asymptotic, we construct a one-dimensional nonparametric test for testing the statistical hypotheses; this test is obtained by randomization in which the numbers \(p(a, b; c) \) of partitions appear (formula (26)). We give also the two-dimensional modification of this test, which is slightly more powerful. Another application of the formulas derived is in the theory of structures of mechanisms.