LATTICE ORDERED GROUPS OF FINITE BREADTH

BY

J. JAKUBÍK (KOŠICE)

The purpose of this note is to give the solution to a problem by Birkhoff (cf. [1], Problem 121) concerning lattice ordered groups (l-groups) of finite breadth (see Section 2). Let G be an l-group, and consider the following conditions on G:

(a) There are elements $x, y \in G$ such that $x < y$ and $2x < 2y$.

(b) There are elements $x, y \in G$ such that $x \neq y$ and $2x = 2y$.

There exist l-groups G satisfying (a) and (b) (cf. [1], p. 291, Example 5); Birkhoff asks if the pathological behaviour defined by conditions (a) and (b) can occur in an l-group of finite breadth.

We show that the answer is positive; for each positive integer $n > 1$ there is an l-group G such that the breadth of G equals n and G fulfils (a) and (b). It is not hard to verify that an l-group G has finite breadth n if and only if there exists a disjoint subset $S \subseteq G$ with $\text{card} S = n$ and if no disjoint subset of G contains more than n elements. Such l-groups were studied by Conrad and Clifford [4] (for $n = 2$), Conrad [2], Kokorin and Hisamiev [6] and Kokorin and Kozlov [7]. In [2] (cf. also [3], where a more general situation was dealt with) it was proved that any such l-group G is a small lexicographic sum of linearly ordered groups A_i ($i = 1, \ldots, n$), where $\{A_i\}_{i=1}^n = \mathcal{P}$ is the system of all maximal linearly ordered subgroups of G. We show that, for a lattice ordered group of finite breadth, condition (a) is equivalent with any one of the following conditions:

(c) There exists $A_i \in \mathcal{P}$ such that A_i is not normal in G.

(d) There exists $0 < a \in G$ such that the interval $[0, a]$ is a chain and a is disjoint with some of its conjugates.

1. Preliminaries. For the standard concepts concerning lattices and lattice ordered groups cf. [1] and [5]. We recall the following notions (cf. [3]):

Let $G = (G; \land, \lor, +)$ be an l-group, $a, b \in G$, $a \leq b$. The interval $[a, b]$ is the set $\{x \in G: a \leq x \leq b\}$. A subset $X \subseteq G$ is convex if $[x_1, x_2] \subseteq X$
whenever \(x_1, x_2 \in X \) and \(x_1 \leq x_2 \). A subset \(Y \subseteq G \) is called disjoint if \(y > 0 \) for each \(y \in Y \) and \(y_1 \wedge y_2 = 0 \) for any pair of distinct elements \(y_1, y_2 \in Y \). A system \(\mathcal{S} \) of convex \(l \)-subgroups of \(G \) is said to be disjoint if for any two distinct \(l \)-subgroups \(A_1, A_2 \in \mathcal{S} \) and any \(a_1 \in A_1, a_2 \in A_2 \) we have \(|a_1| \wedge |a_2| = 0 \). A disjoint system \(\mathcal{S} \) is said to be maximal if it is not a proper subset of a disjoint system of convex \(l \)-subgroups of \(G \). Let \(Y \) be a convex \(l \)-subgroup of \(G \) and \(x \in G \). If \(|x| \wedge |y| = 0 \) for each \(y \in Y \), we write \(Y \triangleleft x \).

Let \(X_1, \ldots, X_n \) be convex \(l \)-subgroups of \(G \) such that the group \((G; +)\) is the direct sum of \(X_i \) (\(i = 1, \ldots, n \)) and, for any \(x_i \in X_i \), \(x_1 + \cdots + x_n \geq 0 \) if and only if \(x_i \geq 0 \) for \(i = 1, \ldots, n \). Then the \(l \)-group \(G \) is said to be an \(l \)-direct sum of its \(l \)-subgroups \(X_i \), and we write \(G = X_1 \oplus \cdots \oplus X_n \).

More generally, let \(\mathcal{S} = \{X_i\} (i \in I) \) be a system of convex \(l \)-subgroups of \(G \) such that the group \((G; +)\) is the discrete direct sum of groups \((X_i; +)\) (\(i \in I \)). Suppose that, for any finite subset \(\{i_1, \ldots, i_n\} \subseteq I \) and any \(x_{i_k} \in X_{i_k} \), the relation \(x_{i_1} + \cdots + x_{i_n} \geq 0 \) implies \(x_{i_k} \geq 0 \) (\(k = 1, \ldots, n \)). Then \(G \) is the \(l \)-direct sum of the system \(\mathcal{S} \) and we then write \(G = \sum \oplus X_i (i \in I) \).

If \(i_1, \ldots, i_n \) are distinct elements of \(I \), \(x_i \in X_i \) and \(x = x_{i_1} + \cdots + x_{i_n} \), then we put \(x_{i_k} = x(X_{i_k}) \).

Now let \(I \) be a linearly ordered set and, for each \(i \in I \), let \(X_i \) be an \(l \)-group such that \(X_i \) is linearly ordered whenever \(i \) is not the least element of \(I \). Let \(H \) be the system of all mappings \(f : I \to \bigcup X_i \) with \(f(i) \in X_i \) for each \(i \in I \). For \(f \in H \) write \(I(f) = \{i \in I : f(i) \neq 0\} \). Let \(G \) be the system of all \(f \in H \) such that \(I(f) \) is well ordered. We define in \(G \) the operation \(+ \) componentwise and we put \(f > 0 \) if \(I(f) \neq 0 \) and \(f(i_0) > 0 \), where \(i_0 \) is the least element of \(I(f) \). Then \(G \) is an \(l \)-group and it is called the lexicographic product of \(l \)-groups \(X_i \); we denote it by \(G = \Gamma X_i (i \in I) \).

Let \(A \) be an \(l \)-ideal of \(G \) such that \(g > a \) for any \(a \in A \) and \(g \in G^+ \setminus A \). Then \(G \) is a lexicographic extension of \(A \) and we then write \(G = \langle A \rangle \). A lexicographic extension \(G = \langle A \rangle \) is non-trivial if \(G \neq A \).

Let \(\mathcal{S}_1, \mathcal{S}_2, \ldots \) be systems of non-zero convex \(l \)-subgroups of \(G \) and \(K = \{1, 2, \ldots \} \). For any \(\mu \in K \) let \(A_\mu \) be the convex \(l \)-subgroup of \(G \) that is generated by the set \(\bigcup A_\mu \), where \(\mathcal{S}_\mu = \{A_\mu \} (i \in I_\mu) \). Assume that the following conditions are fulfilled:

(i) The system \(\mathcal{S}_1 \) is maximal disjoint.

(ii) If \(\mu \) is a positive integer, \(1 < \mu \) and \(i \in I_\mu \), then either \(A_i^\mu \) equals \(A_{i-1}^\mu \) for some \(i_1 \in I_{\mu-1} \) or there is a convex \(l \)-subgroup \(B \) of \(G \) and a finite subset \(\{j_1, \ldots, j_m\} \subseteq I_{\mu-1} \), \(m > 1 \) such that \(B = A_{j_1}^{\mu-1} \oplus \cdots \oplus A_{j_m}^{\mu-1} \) and \(A_i^\mu \) is a non-trivial lexicographic extension of \(B \).

(iii) \(A_\mu = \sum \oplus A_i^\mu (i \in I_\mu) \) and \(A_\mu \) is an \(l \)-ideal of \(G \) for \(\mu = 1, 2, \ldots \).

(iv) \(G = \bigcup A_\mu (\mu \in K) \).
Then G is said to be a small lexicographic sum of l-groups of the system \mathcal{S}_1.

If elements $x, y \in G$ are incomparable, we write $x \not| y$.

2. Breadth of a lattice. Let L be a lattice. Suppose that $b = bL$ is the least positive integer such that any meet $x_1 \wedge \ldots \wedge x_n$ ($n > b$) is always a meet of b of the x_i (cf. [1], p. 99). Then bL is the breadth of the lattice L; the lattice L is said to be of finite breadth if bL does exist.

A subset $X = \{x_1, \ldots, x_m\} \subseteq L$ will be called irreducible if $\inf(X \setminus \{x_i\}) > \inf X$ for each $i \in \{1, \ldots, m\}$. Then $bL = n > 1$ if and only if L contains an irreducible subset with n elements and if no subset $Y \subseteq L$ with $\card Y > n$ is irreducible.

Assertions 2.1-2.3 are easy to verify (cf. also [1], p. 32, Example 6).

2.1. $bL = 1$ if and only if L is a chain.

2.2. If bL exists and L_1 is a sublattice of L, then bL_1 exists and $bL_1 \leq bL$.

2.3. If L is a direct product of lattices L_1 and L_2 with $\card L_1 > 1$ ($i = 1, 2$) and if bL_1 and bL_2 exists, then $bL = bL_1 + bL_2$.

2.4. Let X be a disjoint subset of an l-group G, $\card X = n$, and let H be the convex l-subgroup of G generated by X. Assume that each interval $[0, x]$ ($x \in X$) is a chain. Then $bH = n$.

Proof. Let $X = \{x_1, \ldots, x_n\}$. For any x_i there exists a maximal linearly ordered subgroup X_i of G containing x_i and the system $\{X_i\}$ ($i = 1, \ldots, n$) is disjoint. Thus, from [2], Theorem 2, we infer that $H = X_1 \oplus \ldots \oplus X_n$; now, according to 2.1 and 2.3, we have $bH = n$, since the lattice H is isomorphic to a direct product of lattices X_i ($i = 1, \ldots, n$).

Let $G = \langle H \rangle$ and $x_1, \ldots, x_n \in G, x_1 \wedge \ldots \wedge x_n = x$. Since G/H is linearly ordered, the set $\{x_1 + H, \ldots, x_n + H\}$ has the least element $x_k + H$ and $x_k < x_i$ for each $x_i \not| x_k + H$; because $x_k + H$ is a sublattice of G, we have $x \in x_k + H$ and $x = y_1 \wedge \ldots \wedge y_m$, where $\{y_1, \ldots, y_m\} = \{x_i : x_i \not| x_k + H\}$.

2.5. Let $G = \langle H \rangle$, $bH = n$. Then $bG = n$.

Proof. If bG does exist, then $bG \geq n$ by 2.2. Let $m \geq n, x_i \in G$ ($i = 1, \ldots, m$), $x_1 \wedge x_2 \wedge \ldots \wedge x_m = x$ and assume that $X = \{x_1, \ldots, x_m\}$ is an irreducible subset of G. There is a subset $Y \subseteq X$ such that $Y \subseteq H + x$ and $\inf Y = \inf X$. Since X is irreducible, we have $X = Y$. Write $x - x = z_i$. Then $\{z_1, \ldots, z_m\}$ is an irreducible subset of H, hence $m \leq n$. This shows that $bG = n$.

2.6. If G is a small lexicographic sum of a system $\mathcal{S}_1 = \{B_1, \ldots, B_n\}$ of non-zero linearly ordered groups, then $bG = n$.

Proof. Assume that G is a small lexicographic sum of a finite system $\mathcal{S}_1 = \{B_1, \ldots, B_n\}$ of non-zero linearly ordered groups. Then there is
a positive integer \(k \leq n \) such that (the notation is as in Section 1) \(G = A_k \). From 2.1, 2.3 and 2.5 we infer (by induction) that \(bA_m = n \) for \(m = 1, \ldots, k \). Thus \(bG = n \).

Consider the following example (cf. [1], p. 216, Example 6):

Let \(N \) be the set of all integers and let \(G \) be the set of all triples \((x, y, z) \) with \(x, y, z \in N \). We define the operation \(+ \) in \(G \) by the rule

\[
(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2),
\]

where \(y_3 = y_4 + y_5 \) and \(z_3 = z_1 + z_2 \) if \(x_2 \) is even, \(y_3 = z_1 + y_2 \) and \(z_3 = y_1 + +z_2 \) if \(x_2 \) is odd.

Further, we put \((x, y, z) \geq 0 \) if either \(x > 0 \) or \(x = 0 \) and \(y \geq 0 \), \(z \geq 0 \). Then \(G \) is a lattice ordered group. Write \(Y = \{(0, y, 0) : y \in N \} \) and \(Z = \{(0, 0, z) : z \in N \} \). The \(l \)-group \(G \) is a small lexicographic sum of \(l \)-groups \(Y, Z \) and these are linearly ordered. Therefore, according to 2.6, we have \(bG = 2 \).

Put \(a = (1, 0, 0) \) and \(b = (1, 1, -1) \). Then \(a \neq b \) and \(2a = (2, 0, 0) = 2b \), thus \(G \) fulfills (b). Further, write \(c = (1, 2, -1) \). The elements \(a, c \) are incomparable and \(2c = (2, 1, 1) \geq 2a \), hence \(G \) satisfies (a). Let \(n \) be a positive integer, \(n - 2 = k > 0 \). Let \(B \) be the direct sum of \(k \) copies of \(N, H = G \oplus B \). Then, \(bH = n \) and \(H \) fulfills (a) and (b). Therefore, we have

2.7. For any positive integer \(n \geq 2 \) there is a lattice ordered group \(G \) fulfilling (a) and (b) such that \(bG = n \).

2.8. Let \(G \) be an \(l \)-group. The following conditions are equivalent:

(i) \(bG = n \);
(ii) \(G \) contains a disjoint subset with \(n \) elements and it does not contain any disjoint subset with more than \(n \) elements.

Proof. Assume that (i) holds and let \(X = \{x_1, \ldots, x_m\} \) be a disjoint set. Let \(H \) be the \(l \)-subgroup of \(G \) generated by \(X \). Then \(H \cap [0, x_1] = \{0, x_1\} \). According to 2.4, we have \(bH = m \), whence \(bG \geq m \), and this implies \(m \leq n \). Thus there exists a disjoint subset \(X \) of \(G \) with the greatest cardinality \(m_0 \leq n \). From [2], Theorem 1, it follows that \(G \) is a small lexicographic sum of \(m_0 \) non-zero linearly ordered groups and hence, by 2.6, \(bG = m_0 \). Thus \(n = m_0 \), and so (ii) is satisfied. Conversely, let (ii) hold. By [2] and 2.6, we obtain \(bG = n \).

3. Condition (F). Let us consider the following condition on \(G \neq \{0\} \):

(F) Any bounded disjoint subset of \(G \) is finite.

3.1 (cf. [3], Theorem 6.1). \(G \) fulfills (F) if and only if it is a small lexicographic sum of linearly ordered groups.

From the proof of this theorem that may be found in [3] it follows that if \(G \) satisfies (F), then it is a small lexicographic sum of the system
\mathcal{S}_1 consisting of all maximal non-zero linearly ordered subgroups of G. According to 2.8, any l-group G of finite breadth satisfies (F). If G satisfies (F), then it need not be of finite breadth.

Assume that G satisfies (F). Let \mathcal{S}_1 be as above and let $\mathcal{S}_n (n = 2, 3, \ldots)$ be as in Section 1.

3.2. Assume that each l-group $A^1_i (i \in I_1)$ is an l-ideal of G. Then, for each $n > 1$ and each $i \in I_n$, the l-group A^n_i is an l-ideal of G.

Proof. Assume that the assertion is valid for $n-1$, where $n > 1$, and let $i \in I_n$. There is $i_1 \in I_{n-1}$ such that $A^{n-1}_{i_1} \subset A^n_i$. Thus, for any $x \in G$, we have $A^{n-1}_{i_1} = x + A^{n-1}_{i_1} - x \subset x + A^n_i - x$. Moreover, from the construction of \mathcal{S}_n devised in [3], it follows that there is $i_2 \in I_n$ such that $x + A^n_i - x = A^n_{i_2}$ and any two distinct elements of \mathcal{S}_n are disjoint. Since $A^{n-1}_{i_1} \subset A^n_i \cap A^n_{i_2}$, we obtain $A^n_{i_2} = A^n_i$.

3.3. Assume that there is $A^1_{i_0} \in \mathcal{S}_1$ such that $A^1_{i_0}$ is not an l-ideal of G and the number of l-groups that are conjugate to $A^1_{i_0}$ is finite. Then G fulfills (a).

Proof. According to the assumption, there is $x \in G$ such that $-x + A^1_{i_0} + x \neq A^1_{i_0}$. Consider the mapping $\varphi: g \mapsto -x + g + x$ ($g \in G$). Each of the l-groups

\begin{equation}
\varphi(A^1_{i_0}), \varphi^2(A^1_{i_0}), \ldots, \varphi^n(A^1_{i_0}), \ldots
\end{equation}

is conjugate to $A^1_{i_0}$, hence the sequence (1) is finite and since φ is an automorphism on G, there is the least positive integer $n > 1$ such that $\varphi^n(A^1_{i_0}) = A^1_{i_0}$. Then $A^1_{i_0}, \varphi(A^1_{i_0}), \ldots, \varphi^{n-1}(A^1_{i_0})$ are distinct l-groups. Choose $0 < z \in A^1_{i_0}$ and write

\[y = x + z - \varphi(z) + \varphi^2(z) - \varphi^3(z) + \ldots + (-1)^{n-1} \varphi^{n-1}(z), \quad y_1 = -x + y. \]

Since φ^k ($k = 1, 2, \ldots$) is an automorphism on the l-group G, each l-group $\varphi^k(A^1_{i_0})$ is a maximal linearly ordered subgroup of G, hence belongs to \mathcal{S}_1. Therefore, the system

\[\mathcal{S}_0 = \{ A^1_{i_0}, \varphi(A^1_{i_0}), \ldots, \varphi^{n-1}(A^1_{i_0}) \} \]

is disjoint and so, according to Theorem 2 of [2], the convex l-subgroup H of G generated by the subgroups belonging to \mathcal{S}_0 is the l-direct sum of l-groups $A^1_{i_0}, \ldots, \varphi^{n-1}(A^1_{i_0})$. We have $y_1 \in A^1_{i_0} \oplus \varphi(A^1_{i_0}) \oplus \ldots \oplus \varphi^{n-1}(A^1_{i_0})$ and $\varphi^k(z) > 0$ ($k = 0, \ldots, n-1$); thus the element y_1 is incomparable with 0 and, therefore, $y_1 \not\sim x$. Further, we have

\[\varphi(y_1) = \varphi(z) - \varphi^2(z) + \varphi^3(z) - \ldots + (-1)^{n-1} \varphi^n(z), \]

whence

\[2y = 2x + \varphi(y_1) + y_1 = 2x + (-1)^{n-1} \varphi^n(z) + z. \]

Now, we distinguish two cases:
(i) Suppose that \((-1)^{n - 1} \varphi^n(x) + z \neq 0\). Since \(\varphi^n(A^1_{0}) = A^1_{0}\), we have \((-1)^{n - 1} \varphi^n(x) + z \in A^1_{0}\) and because \(A^1_{0}\) is linearly ordered, we infer that the elements \(2x\) and \(2y\) are comparable and distinct; therefore, (a) is valid.

(ii) Assume that \((-1)^{n - 1} \varphi^n(x) + z = 0\). Write \(y_2 = z + y_1, y' = x + y_2\). Then we get \(y' = x + y_2\), and

\[
2y' = 2x + \varphi(y_2) + y_2 = 2x + \varphi(x) + \varphi(y_1) + z + y_1
\]

\[
= 2x + \varphi(x) + ((-1)^{n - 1} \varphi^n(x) + z) + z = 2x + \varphi(x) + z > 2x,
\]

whence (a) holds.

As a corollary to 3.3, 2.8, and 3.1 we obtain

3.4. Let \(G\) be an \(l\)-group of finite breadth and assume that there exists \(A^1_{i} \in \mathcal{J}_1\) such that \(A^1_{i}\) is not normal in \(G\). Then \(G\) fulfills (a).

Assume that \(G\) satisfies (F) and that each \(A^1_{i}(i \in I_1)\) is normal. For \(0 < x \in G\), let \(I(x) = \{ i \in I_1: 0 < a \leq x \text{ for some } a \in A^1_{i} \}\). Then, for \(x, y \in G\), we have \(x \wedge y = 0\) if and only if \(I(x) \cap I(y) = \emptyset\).

Proof. Let \(x \wedge y = 0\). Assume that \(i \in I(x) \cap I(y)\). There exist \(a_1, a_2 \in A^1_{i}\) with \(0 < a_1 \leq x, 0 < a_2 \leq y\); because \(A^1_{i}\) is linearly ordered, we have \(0 < a_1 \wedge a_2 \leq x \wedge y = 0\), a contradiction. Conversely, let \(I_1(x) \cap I_1(y) = \emptyset\). If \(x \wedge y = z > 0\), then (since the system \(\mathcal{J}_1\) is maximal disjoint) there is \(i \in I_1\) and \(0 < a \in A^1_{i}\) with \(a \leq z\). From this we obtain \(i \in I_1(x) \cap I_1(y)\), a contradiction.

Let \(\varphi\) have the same meaning as in 3.3.

3.6. Assume that \(G\) satisfies (F) and that each \(A^1_{i}(i \in I_1)\) is normal. Let \(a, b \in G\), \(a \wedge b = 0\). Then \(a \wedge \varphi(b) = 0\).

Proof. Suppose to the contrary that \(a \wedge \varphi(b) = c > 0\). Then \(I(c) \neq \emptyset\); let \(i \in I(c)\). Thus \(i \in I(a)\) and \(i \in I(\varphi(b))\). Therefore, \(A^1_{i}\) non \(\delta\varphi(b)\), whence \(\varphi^{-1}(A^1_{i})\) non \(\delta b\). But \(\varphi^{-1}(A^1_{i}) = A^1_{i}\) and so \(A^1_{i}\) non \(\delta b\), and this implies \(i \in I(b)\). We get \(i \in I(a) \cap I(b)\); thus, according to 3.5, \(a \wedge b \neq 0\), a contradiction.

3.7. Assume that \(G\) satisfies (F) and each \(A^1_{i} \in \mathcal{J}_1\) is normal. Then \(G\) fulfills neither (a) nor (b).

Proof. Suppose that there are elements \(x, y \in G\) with \(x \not| y, 2x \leq 2y\). There is a positive integer \(n\) such that \(x, y, 2x, 2y \in A^1_{n}\); let \(n\) be the least positive integer with this property. Since \(A^1_{n}\) is discrete direct sum of \(l\)-groups \(A^1_{n}(i \in I_n)\), there must exist \(i_0 \in I_n\) such that \(x(A^1_{n}) | y(A^1_{n})\), \(2x(A^1_{n}) = 2y(A^1_{n})\). Write \(x(A^1_{n}) = x_1, y(A^1_{n}) = y_1\). It cannot occur that \(A^1_{n} \leq A^1_{n-1}\) for some \(i \in I_{n-1}\) because of the minimality of \(n\); moreover, \(n > 1\) since the \(l\)-groups \(A^1_{i}\) are linearly ordered. Thus \(A^1_{n} = \langle B \rangle\), \(A^1_{n} \neq B\) and \(B\) is a direct sum of two or more \(l\)-groups belonging to \(\mathcal{J}_{n-1}\). From \(x \not| y\) we obtain \(x + B = y + B\), whence \(z = -x_1 + y_1 \in B, z \not| 0\). There-
fore, \(z = z^+ - z^- \), \(z^+ > 0 \), \(z^- > 0 \) and \(z^+ \wedge z^- = 0 \). Hence, \(y_1 = x_1 + z \) and \(2y_1 = 2x_1 + \varphi(z^+) - \varphi(z^-) + z^+ - z^- \).

According to 3.6, we have \(\varphi(z^+) \wedge z^- = 0 \), \(\varphi(z^-) \wedge z^+ = 0 \) and, clearly, \(\varphi(z^+) \wedge \varphi(z^-) = 0 \); therefore, \((\varphi(z^+) + z^+) \wedge (\varphi(z^-) + z^-) = 0 \). From this it follows that \(\varphi(z^+) - \varphi(z^-) + z^+ - z^- \mid 0 \), whence \(2y_1 \mid 2x_1 \), a contradiction.

3.8. Theorem. Assume that \(G \) satisfies \((F) \) and that each \(A_i \in S \) has only a finite number of conjugates. Then condition (a) is equivalent with any one of the following conditions: (i) there exists \(A_i \in S \) that is not normal in \(G \); (ii) there exists \(0 < a \in G \) such that \([0, a] \) is a chain and the element \(a \) is disjoint with some of its conjugates. Moreover, if \(G \) satisfies (b), then it fulfills (a) as well.

Proof. The equivalence of conditions (a) and (i) follows from 3.3 and 3.7. Assume that (i) is valid and choose \(0 < a \in A_i \). There is \(x \in G \) such that \(-x + A_i + x = A_i \in S_1 \), \(A_i \neq A_i \), hence \(A_i \wedge A_i = \{0\} \) and, therefore, \(a \wedge (-x + a + x) = 0 \). Since \(A_i \) is linearly ordered, \([0, a] \) is a chain. Conversely, let (ii) be satisfied. Because \([0, a] \) is a chain, there is \(A_i \in S_1 \) with \(a \in A_i \). If \(a \wedge (-x + a + x) = 0 \) for some \(x \in G \), then \(-x + a + x \notin A_i \), hence \(-x + A_i + x \neq A_i \). If (b) is valid, then, according to 3.7, (i) holds, and so (a) is satisfied.

As a corollary we obtain

3.8.1. Let \(G \) be an \(l \)-group of finite breadth. Then conditions (a), (i) and (ii) from 3.8 are equivalent. If \(G \) satisfies (b), then it fulfills (a) as well.

3.9. There exist \(l \)-groups of finite breadth satisfying (a) and not fulfilling (b).

Example. Let \(I \) be the set of all integers with the natural order and let \(X_i = N = I \) for each \(i \in I \), \(X = Y = \bigcup_{i \in I} X_i \). Let \(G \) be the set of all triples \((n, x, y)\) with \(n \in N \), \(x \in X \), \(y \in Y \). For any \(n \in N \) and \(x \in X \) let \(x^n \in X \) such that \(x^n(i) = x(i + n) \). Define the operation \(+ \) in \(G \) by the rule

\[
(n_1, x_1, y_1) + (n_2, x_2, y_2) = (n_1 + n_2, x_3, y_3),
\]

where \(x_3 = x_1^n + x_2, y_3 = y_1^n + y_2 \) for \(n \) even, and \(x_3 = y_1^n + x_2, y_3 = x_1^n + y_2 \) for \(n \) odd. \((G; +)\) is a group. Put \((n_1, x_1, y_1) \geq 0\) if either \(n_1 > 0 \) or \(n_1 = 0 \) and \(x_1 \geq 0, y_1 \geq 0 \). Then \(G \) is an \(l \)-group, \(bG = 2 \), and \(G \) fulfills (a) but not (b).

REFERENCES

Reçu par la Rédaction le 21. 9. 1971