ON MONOTONE UNIONS OF CLOSED n-CELLS

BY

P. H. DOYLE (EAST LANSING, MICHIGAN)

1. Introduction. In [1] Fort showed that every open connected set in E^n is a monotone union of closed n-cells. We extend this property to a larger class of spaces and study some properties of such monotone unions. All spaces are Hausdorff.

2. Definitions. A simplicial complex K^n is monotonic if

$$K^n = \bigcup_{i=1}^{p} K_i,$$

where each K_i is a subcomplex of K^n, K_i is an n-simplex and K_{i+1} $(1 \leq i \leq p-1)$ is obtained from K_i by adding just one n-simplex to K_i that has an $(n-1)$-simplex in common with K_i. If F is a set, $|F|$ is its cardinality.

Theorem 1. If K^n is a monotonic complex of dimension n $(n \geq 2)$, then

$$K^n = \bigcup_{i=1}^{\infty} C_i,$$

where C_i is a closed n-cell and $C_i \subseteq C_{i+1}$ for $i = 1, 2, 3, \ldots$

Proof. Let K^n be monotonic so that

$$K^n = \bigcup_{i=1}^{p} K_i.$$

The proof is by induction on p. The inductive hypothesis we carry along is the following: For $p < a$ we have proved our result with the hypothesis that if $\{\sigma^{n-1}_j\}_{j=1}^{a}$ is any collection of $(n-1)$-simplices in K^n, then the union

$$\bigcup_{i=1}^{\infty} C_i = K^n$$
can be chosen so that \(\text{Bd} \, C_i \) meets each \(\sigma_i^{n-1} \) in an \((n-1)\)-dimensional proper set for all \(i \). For \(p = 1 \) the result follows. So assume it for \(p < a \). Let

\[
K^n = \bigcup_{i=1}^{a-1} K_i.
\]

\(\bigcup_{i=1}^{a-1} K_i \) is monotonic and has an \((n-1)\)-simplex in common with \(\sigma^n \), the \(n \)-simplex added to \(K_{a-1} \) to get \(K_a \). Call it \(\sigma^{n-1} \). By the inductive hypothesis we have \(K_{a-1} = \bigcup_{i=1}^{\infty} C_i \) and \(\text{Bd} \, C_i \cap \sigma^{n-1} \) has dimension \(n-1 \). There is on each \(\text{Bd} \, C_i \) a point \(x \) and a neighborhood of \(x \) in \(\text{Int} \, a^{n-1} \). To each \(C_i \) we attach a monotone union of closed \(n \)-cells in \((\sigma^n - K_{a-1}) \cup A^{n-1} \) where \(A^{n-1} \) is an \((n-1)\)-simplex neighborhood of \(x \) in \(\text{Int} \, \sigma^{n-1} \). Call the resulting \(n \)-cells \(C_i \) and then \(K^n = \bigcup_{i=1}^{\infty} C_i \). The inductive hypothesis follows immediately.

By way of example consider a 3-book \(B^3 \); that is \(B^3 = T \times [0, 1] \), where \(T \) is a triod. By looking at Fig. 1 we can see the right monotone union since \(B^3 \) is a 1-1 continuous image of \(B_1 \).

![Fig. 1](image)

4. Complexes of dimension \(n \leq 1 \). A monotonic 0-complex is a point. So let \(K \) be a monotonic 1-complex. We ask when

\[
K = \bigcup_{i=1}^{\infty} I_i,
\]

where \(I_i = [a_i, b_i] \) is an arc with endpoints \(a_i, b_i \) while \(I_i \subset I_{i+1} \). The triod shows this is not always the case, while every connected 1-complex is monotonic. Without loss of generality let \(K = \bigcup_{i=1}^{\infty} I_i \), where \(a_i \rightarrow a \) and \(b_i \rightarrow b \). Then \(K \) is a very special continuous image of the closed interval \([0, 1]\) under \(f: [0, 1] \rightarrow K \) such that \(f|(0, 1) \) is a homeomorphism while \(f(0) = a, f(1) = b \), and so \(F = f^{-1}(a \cup b) \) contains at most four points.

If \(F \) contains four points then \(f \) identifies 0 or 1 with interior points \(c \) and \(d \) respectively. Then \(K \) is determined entirely by the order 0, \(c, d, 1 \). The two figures appear in Fig. 2.
If \(F \) contains 3 points, then \(f \) identifies a single interior point. The other figures appear in Fig. 2.

These figures represent the termination of a selfavoiding walk discussed in [2], if growth occurs at each end. Similar figures are found in the study of 1-1 maps as seen in [3].

\[
\begin{align*}
|F| = 4 & & \begin{array}{c}
\includegraphics[width=0.2\textwidth]{diagram1.png}
\end{array} \\
|F| = 3 & & \begin{array}{c}
\includegraphics[width=0.2\textwidth]{diagram2.png}
\end{array} \\
|F| = 2 & & \begin{array}{c}
\includegraphics[width=0.2\textwidth]{diagram3.png}
\end{array}
\end{align*}
\]

Fig. 2

5. **Products and 1-1 maps.** Suppose \(X \) is a topological space and \(X \) is a monotone union of closed \(n \)-cells. Then if \(Y \) is a 1-1 continuous image of \(X \), \(Y \) has the property as well. If \(X \) and \(Y \) both have the property, then \(X \times Y \) is a monotone union of closed cells. The converse of the last statement if false as shown by the product of a triod and an interval. From this remark and Theorem 1 we have.

6. **The monotone topology.** If \(X = \bigcup C_i \), where \(C_i \subset C_{i+1} \) is a closed \(n \)-cell, the monotone topology is obtained by defining a new topology on the set \(X \). If \(X \) is an interior point of some \(C_i \), then a basis at \(x \) is any basis at \(x \) in \(\text{Int} \, C_i \). If \(X \) is never in the interior of a cell we take as basis at \(x \) all sets of form \(\bigcup_{a_x} U_x^j \) where \(x \in C_{a_x} \) and \(U_x^j \) is a neighborhood of \(x \) in \(C_j \). Let \(\tilde{X} \) be the resulting space. Then the natural map \(\tilde{N}: \tilde{X} \rightarrow X \) is continuous. \(\tilde{X} \) has a weak topology.

The above results can be generalized to infinite complexes.
REFERENCES

MICHIGAN STATE UNIVERSITY

Reçu par la Rédaction le 7. 10. 1969