On balls and totally geodesic submanifolds

by P. G. WALCZAK (Łódź)

0. Totally geodesic submanifolds of a Riemannian manifold M can be characterized as submanifolds N such that any point x of N admits an open neighbourhood $U \subset N$ such that $d_M | U \times U = d_N | U \times U$, where d_M and d_N denote the distance functions on M and N, respectively. In this note, we show that a compact submanifold N of M is totally geodesic if and only if there exists a positive number $\varepsilon > 0$ such that

$$B_N(x, r) = B_M(x, r) \cap N$$

for any x of N and r of $(0; \varepsilon)$, where $B_M(x, r)$ and $B_N(x, r)$ denote the centred at x open balls of radii r on M and N, respectively. (Recall, that the relation

$$B_N(x, r) \subset B_M(x, r) \cap N$$

holds for any submanifold N of M, any x and r.) If N is a submanifold of M and equality (1) holds for any x of N and r of $(0; \varepsilon)$, then we say that N is ε-regular. We denote by $\varepsilon(N)$ the smallest upper bound of the set of all ε such that N is ε-regular.

1. Theorem A. (a) If a submanifold N of a Riemannian manifold M is ε-regular for some $\varepsilon > 0$, then it is totally geodesic. (b) If N is compact and totally geodesic, then it is ε-regular for some $\varepsilon > 0$.

Proof. (a) Suppose that N is ε-regular. It is sufficient to show that if $x, y \in N$ and $d_N(x, y) < \varepsilon$, then $d_M(x, y) \geq d_N(x, y)$. In order to do this, let $a = d_N(x, y) < r < \varepsilon$. Then $y \in B_N(x, r) - B_N(x, a) = (B_M(x, r) \cap N) - (B_M(x, a) \cap N) = (B_M(x, r) - B_M(x, a)) \cap N$. It follows that $y \notin B_M(x, a)$, i.e. that $d_M(x, y) \geq a$.

(b) Suppose that N is compact and totally geodesic. For any x of N denote by $g(x)$ the radius of injectivity of M at x ([2], § 5.2). The function $N \ni x \mapsto g(x)$ is continuous. Therefore, the number $\delta = \min_N g$ is positive. If $x \in N$, $v \in T_x N$, $|v| = 1$, $|t| < \delta$ and $y = \exp(tv)$, then $d_N(x, y) = d_M(x, y) = |t|$. In fact, if $a = d_N(x, y)$, then $a \leq L(c) = |t| < \delta$, where $c : \langle 0, 1 \rangle \to N$ is a
regular curve given by $c(s) = \exp(stv)$, and $y = \exp(aw)$ for some unit vector w of T_yN. Since $|aw| < g(x)$, $|tv| < g(x)$, and $\exp(aw) = \exp(tv)$, we have $aw = tv$ and $a = |t|$. The similar argumentation shows that $d_M(x, y) = |t|$.

For any x of N put $\varepsilon_x = d_M(x, N-B_N(x, \frac{1}{2}\delta))$.

Let us take points x and y of N such that $d_N(x, y) < \frac{1}{2}\delta$. There exists a point z_0 of the set $N-B_N(x, \frac{1}{2}\delta)$ such that $\varepsilon_x = d_M(x, z_0)$. Clearly,

$$d_N(y, z_0) \geq d_N(x, z_0) - d_N(x, y) \geq \frac{1}{2}\delta - d_N(x, y).$$

If $d_N(y, z_0) \geq \frac{1}{2}\delta$, then $z_0 \in N-B_N(y, \frac{1}{2}\delta)$ and

$$\varepsilon_y \leq d_M(y, z_0) \leq d_M(y, x) + d_M(x, z_0) \leq \varepsilon_x + d_N(x, y).$$

If $d_N(y, z_0) < \frac{1}{2}\delta$, then there exists an unit vector v of T_yN such that $z_0 = \exp(tv)$, $t = d_N(y, z_0)$. Put $z = \exp((t+d_N(x, y))v)$. Since $t + d_N(x, y) < \delta \leq g(y)$, we have $d_N(y, z) = t + d_N(x, y)$ and $d_N(z, z_0) = d_N(x, y)$.

Therefore,

$$\varepsilon_y \leq d_M(y, z) \leq d_M(y, x) + d_M(x, z_0) + d_M(z_0, z) \leq \varepsilon_x + 2d_N(x, y).$$

From (3) and (4) it follows that if $x, y \in N$ and $d_N(x, y) < \frac{1}{2}\delta$, then

$$|\varepsilon_x - \varepsilon_y| \leq 2d_N(x, y).$$

We conclude that the function $N \ni x \mapsto \varepsilon_x$ is continuous.

Put $\varepsilon = \min \{\varepsilon_x; x \in N\}$. We claim that N is ε-regular. In fact, if $x \in N$, $r < \varepsilon$, and $y \in N \cap B_M(x, r)$, then $d_M(x, y) < \frac{1}{2}\delta$ (otherwise $y \in N-B_N(x, \frac{1}{2}\delta)$ and $d_M(x, y) \geq \varepsilon_x \geq \varepsilon > r$) and $d_N(x, y) = d_M(x, y) < r$.

This ends the proof.

In other words, Theorem A says that (a) if $\varepsilon(N) > 0$, then N is totally geodesic and (b) if a submanifold N is compact and totally geodesic, then $\varepsilon(N) > 0$.

Examples. If S^k (resp. P^kR) is considered as a totally geodesic submanifold of S^m (resp., of P^mR), $k < m$, then $\varepsilon(S^k) = \varepsilon(P^kR) = +\infty$. If N is the totally geodesic submanifold of the torus $T = R^2/Z^2$ obtained by the projection of the line $L \subset R^2$ given by the equation

$$px_1 + qx_2 + c = 0,$$

then

(a) $\varepsilon(N) = 0$ when the number p/q is irrational,

(b) $\varepsilon(N) = +\infty$ when $p, q \in Z$ and $p^2 + q^2 = 1$,

(c) $\varepsilon(N) = 1/\sqrt{p^2 + q^2}$ when $p, q \in Z$, $(p, q) = 1$, and $p^2 + q^2 > 1$.

If N_i ($i = 1, 2$) are totally geodesic submanifolds of Riemannian manifolds M_i, then $N_1 \times N_2$ is a totally geodesic submanifold of $M_1 \times M_2$ and $\varepsilon(N_1 \times N_2) = \min(\varepsilon(N_1), \varepsilon(N_2)).$
2. **Theorem B.** Let G be a group of isometries acting freely and properly discontinuously on a complete Riemannian manifold M. If N is a complete G-invariant connected submanifold embedded in M and $\bar{N} = \pi(N)$, where $\pi: M \to \bar{M} = M/G$ is the projection, then

$$\min\left\{ \frac{1}{2}d, \varepsilon(\bar{N}) \right\} \leq \varepsilon(N) \leq \varepsilon(\bar{N}),$$

where $d = \inf \{ d_M(x, gx); \ x \in N, \ g \in G, \text{ and } g \neq e \}$.

Proof. At first, we shall establish the equality

$$d_{\bar{M}}(\pi(x), \pi(y)) = \inf_{g \in G} d_M(x, yg), \quad x, y \in M.$$

Let us take points x and y of M and put $\bar{x} = \pi(x)$, $\bar{y} = \pi(y)$. Since M and \bar{M} are complete and $\pi: M \to \bar{M}$ is a covering, there exist a curve $\bar{c}: \langle 0, 1 \rangle \to \bar{M}$ and its lift $c: \langle 0, 1 \rangle \to M$ such that $\bar{c}(0) = \bar{x}$, $\bar{c}(1) = \bar{y}$, $c(0) = x$, and $L(\bar{c}) = d_{\bar{M}}(\bar{x}, \bar{y})$. It is clear that $L(c) = L(\bar{c})$ and $c(1) = yg$ for some g of G. Therefore,

$$d_{\bar{M}}(\bar{x}, \bar{y}) = L(\bar{c}) = L(c) \geq d_M(x, yg) \geq \inf_{g \in G} d_M(x, yg).$$

On the other hand, if $g \in G$, then there exists a curve $c: \langle 0, 1 \rangle \to M$ such that $c(0) = x$, $c(1) = yg$, and $L(c) = d_M(x, yg)$. Then

$$d_M(x, yg) = L(c) = L(\pi \circ c) \geq d_{\bar{M}}(\bar{x}, \bar{y}).$$

Inequalities (7) and (8) yield (6).

From (6), it follows immediately that

$$B_{\bar{M}}(\pi(x), r) = \pi(B_M(x, r))$$

for any x of M and $r > 0$.

From the assumptions of the Theorem, it follows that $G_N = \{ g \mid N; \ g \in G \}$ is a group of isometries of N acting freely and properly discontinuously on N in such manner that $\bar{N} = N/G_N$. Therefore, we can prove analogously to (6) and (9) that

$$d_{\bar{N}}(\pi(x), \pi(y)) = \inf_{g \in G} d_N(x, yg)$$

and

$$B_{\bar{N}}(\pi(x), r) = \pi(B_N(x, r))$$

for any $x \in N$, $y \in N$, and $r > 0$.

Comparing (9) and (11) we can conclude that if $x \in N$ and $r < \varepsilon(N)$, then $B_{\bar{N}}(\pi(x), r) = B_{\bar{M}}(\pi(x), r) \cap \bar{N}$. This yields the inequality $\varepsilon(N) \leq \varepsilon(\bar{N})$.

Using equalities (6) and (10), we can show that

$$\pi^{-1}(B_{\bar{M}}(\pi(x), r)) = \bigcup_{g \in G} B_M(xg, r)$$

6 — Annales Polonici Mathematici XLIV. 3.
and
\[\pi^{-1} \left(B_N(\pi(x), r) \right) = \bigcup_{g \in G} B_N(xg, r) \]
for any \(x \) and \(r \). Therefore, if \(r < \varepsilon(\bar{N}) \) and \(x \in N \), then
\[\bigcup_{g \in G} B_N(xg, r) = \pi^{-1} \left(B_{\bar{N}}(\pi(x), r) \right) \cap \pi^{-1}(\bar{N}) \]
\[= \bigcup_{g \in G} (B_M(xg, r) \cap N). \]
If, in addition, \(r < \frac{1}{2}d \), then \(B_M(x, r) \cap B_M(xg, r) = \emptyset \) for any \(g \in G \), \(g \neq e \). This implies equality (1) for any \(x \) of \(N \) and \(r < \min \left(\frac{1}{2}d, \varepsilon(\bar{N}) \right) \). Consequently, we have the inequality \(\varepsilon(N) \geq \min \left(\frac{1}{2}d, \varepsilon(\bar{N}) \right) \) which completes the proof.

Let us note that if \(M \) is compact, then the number \(d \) in (5) is positive. Simple examples (geodesic lines on the cylinder and on the torus) show that inequalities (5) need not be satisfied if \(N \) is not \(G \)-invariant and that equalities \(\varepsilon(N) = \varepsilon(\bar{N}) \) and \(\varepsilon(N) = \frac{1}{2}d \) appear occasionally.

3. Let us recall that a submersion \(f: M \to B \), where \(M \) and \(B \) are Riemannian manifolds, is called Riemannian [7] if and only if \(|df(v)| = |v|\) for any vector \(v \) of \(TM \) orthogonal to \(\ker df \).

Theorem C. If \(f: M \to B \) is a Riemannian submersion with totally geodesic fibres and \(M \) is complete, then \(\varepsilon(N) = +\infty \) for any fibre \(N \) of \(f \).

Proof. For any smooth curve \(\gamma: \langle 0; 1 \rangle \to B \), \(\gamma(0) = x \), \(\gamma(1) = y \), let us define a mapping \(F_\gamma: f^{-1}(x) \to f^{-1}(y) \) as follows. If \(z \in f^{-1}(x) \), then there exists a curve \(\gamma_z: \langle 0; 1 \rangle \to M \) such that \(\gamma_z(0) = z \), \(f \circ \gamma_z = \gamma \) and \(\gamma'_z(t) \perp \ker df(\gamma_z(t)) \) for any \(t \) of \(\langle 0; 1 \rangle \). \(\gamma'_z \) is uniquely determined by these conditions and is called the horizontal lift of \(\gamma \). Put \(F_\gamma(z) = \gamma'_z(1) \).

The mappings \(F_\gamma \) are diffeomorphisms and, according to [3], a necessary and sufficient condition for \(F_\gamma \) to be isometries is that the fibres of \(f \) be totally geodesic.

Let us take an arbitrary curve \(c: \langle 0; 1 \rangle \to M \) and define a new curve \(C: \langle 0; 1 \rangle \to M \) putting
\[C(t) = F_{\gamma_t}^{-1}(c(t)), \]
where \(\gamma_t: \langle 0; 1 \rangle \to B \) is given by \(\gamma_t(s) = f(c(st)) \). It is evident that \(C \) lies on the fibre \(f^{-1}(f(c(0))) \). The vector \(dF_{\gamma_t}(C(t)) \) is equal to the vertical component of \(\dot{c}(t) \). Therefore,
\[|\dot{C}(t)| = |dF_{\gamma_t}(C(t))| \leq |\dot{c}(t)|, \quad t \in \langle 0; 1 \rangle, \]
and
\[L(C) \leq L(c). \]
The above argumentation shows that for any curve on M joining two points of a fibre N of a submersion f we are able to find a curve on N which joins the same points and is shorter than the given one. Therefore, if N is a fibre of f and $x, y \in N$, then

$$d_N(x, y) \leq d_M(x, y).$$

Our Theorem follows immediately from this inequality.

4. Assume that N is a submanifold of a Riemannian manifold M, the Ricci curvature Ric_M of M is bounded by a positive number k from below, and the diameter $d(N)$ of N is greater than $\pi\sqrt{m-1}/\sqrt{k}$, where $m = \dim M$. Let us take points x and y of N such that $d_N(x, y) > \pi\sqrt{m-1}/\sqrt{k}$. If $c: \langle 0; 1 \rangle \to M$ is a minimal geodesic on M joining x to y, then according to the well-known Myers theorem [6], $L(c) \leq \pi\sqrt{m-1}/\sqrt{k}$. Consequently, $a = d_N(x, y) - d_M(x, y) > 0$ and

$$y \in B_M(x, d_N(x, y) - b) \cap N - B_N(x, d_N(x, y) - b)$$

for any b of $(0; a)$. In this manner, we established the following:

Proposition D. If N is a submanifold of a complete m-dimensional Riemannian manifold M and the Ricci curvature of M is bounded by a number $k > 0$ from below, then either $d(N) \leq \pi\sqrt{m-1}/\sqrt{k}$ or $\varepsilon(N) \leq \pi\sqrt{m-1}/\sqrt{k}$.

Replacing in the above argumentation the classical Myers theorem by its generalization due to Galloway [1] we can generalize Proposition D as follows:

Proposition D'. Assume that M is a complete m-dimensional Riemannian manifold and that there exist constants $k > 0$ and $c \geq 0$, and a differentiable function $h: M \to \mathbb{R}$ such that $|h| \leq c$ and

$$\operatorname{Ric}_M(v, v) \geq k + v(h)$$

for any unit vector v of TM. Then the inequality

$$\min(d(N), \varepsilon(N)) \leq \frac{\pi}{k}(c + \sqrt{c^2 + k(m-1)})$$

holds for any submanifold N of M.

Proposition D' and Theorem C imply the following:

Corollary. Under the hypotheses of Proposition D', any fibre N of a Riemannian submersion $f: M \to B$ with totally geodesic fibres satisfies the inequality

$$d(N) \leq \frac{\pi}{k}(c + \sqrt{c^2 + k(m-1)}).$$
Examples. In the case of the Riemannian submersion \(f: P^{2n+1} \rightarrow P^n Q \)
eq 0 and \(k = \frac{1}{2} (n+1) \) is not informative: The fibres of \(f \) are isometric to \(S^2 \) and have diameter equal to \(\pi \) while the right-hand side of (12) equals \(\pi \sqrt{4n-2}/(n+1) \) and tends to \(2\pi \) as \(n \to \infty \). The situation is different in the case of the orthogonal group \(O(n) \) equipped with the standard biinvariant Riemannian metric. If \(n < m \), then \(O(n) \) is a closed subgroup of \(O(m) \) and the projection \(O(m) \to O(m)/O(n) \) is a Riemannian submersion with totally geodesic fibres isometric to \(O(n) \). The Ricci curvature of \(O(m) \) is constant and equals \(\frac{1}{2} (m-1)(m-2) \). From (12), it follows that

\[
d(O(n)) \leq \pi \sqrt{m/(m-2)}
\]

for any \(m > n \). Passing with \(m \) to the infinity, we get

\[
d(O(n)) \leq \pi.
\]

On the other hand, \(d(O(n)) \geq d(O(2)) = \pi \). It follows that \(d(O(n)) = \pi \) for any \(n \geq 2 \).

5. Let \(F \) be a foliation of a Riemannian manifold \(M \). If all the leaves of \(F \) are compact minimal submanifolds of \(M \), then \(F \) is stable, i.e. the quotient \(M/F \) is Hausdorff [8]. If \(X \) is an arbitrary subset of \(M \) saturated by compact minimal leaves, then the quotient \(X/F \) need not be Hausdorff even if all the leaves of \(F \) are totally geodesic. For example, if \(M = R \times S^1 \times S^1 \) (endowed with the standard Riemannian metric), \(F \) is the 1-dimensional foliation of \(M \) defined by the vector field

\[
Z = t \frac{\partial}{\partial x} + \frac{\partial}{\partial y},
\]

where \((t, x, y)\) are standard coordinates on \(M \), and \(X = \{0, 1, \frac{1}{2}, \frac{1}{3}, \ldots \} \times \times S^1 \times S^1 \), then \(X \) is saturated by closed geodesics but \(X/F \) is not Hausdorff. In [9], we proved the following:

Proposition E. If \(X \subset M \) is a set saturated by compact totally geodesic leaves of a foliation \(F \) of a Riemannian manifold \(M \) and the function

\[
X \ni x \mapsto \varepsilon(L_x),
\]

where \(L_x \) denotes the leaf of \(F \) passing through \(x \), is locally bounded by positive numbers from below (i.e., for any \(x \) of \(X \) there exist a neighbourhood \(U \) of \(x \) and a number \(a > 0 \) such that \(\varepsilon(L_y) \geq a \) for any \(y \) of \(U \cap X \), then \(X/F \) is Hausdorff.

The converse is not true. For example, if \(F \) is the standard foliation of the Möbius strip \(M \) by closed geodesics (Figure 1), then \(M/F \) is Hausdorff but the function (13) is not bounded from below by any positive number in any neighbourhood of the "central leaf" \(L_0 \). In fact, if \(L \in F \) and \(d(L, L_0) = a > 0 \) is sufficiently small, then \(\varepsilon(L) = 2a \).
6. A manifold M with a projective structure can be equipped with a projective invariant pseudometric δ_M (see [4], [5], [10]). If δ_M is a metric, then M is said to be hyperbolic. Let N be a submanifold of a hyperbolic manifold M. If N carries the projective structure induced from M, then N is hyperbolic and

$$\delta_N(x, y) \geq \delta_M(x, y)$$

for all x and y of N. It follows that the balls $B_N(x, r) = \{y \in N; \delta_N(x, y) < r\}$ and $B_M(x, r) = \{y \in M; \delta_M(x, y) < r\}$ satisfy condition (2) for any x of N and $r > 0$. One can expect that equality (1) holds for sufficiently small r in this case. The following example shows that this is not true even if M and N are domains on the plane.

Example. Let us consider the situation described in Figure 2. M is a convex bounded domain (a disc of the radius 2) on the plane. Therefore, M is hyperbolic and the metric δ_M is given by

$$\delta_M(z_1, z_2) = \left| \log \frac{(z_1 - t_2)(z_2 - t_1)}{(z_1 - t_1)(z_2 - t_2)} \right|,$$
where \(t_1 \) and \(t_2 \) are the points of intersection of the boundary of \(M \) with the line passing through \(z_1 \) and \(z_2 \). Exactly the same can be said about the domain \(N \) (a disc of the radius 1). Therefore,

\[
\delta_M(x, y) = \log \frac{(3-a)(1+a+b)}{(1+a)(3-a-b)}
\]

and

\[
\delta_N(x, y) = \log \frac{1+b}{1-b}.
\]

It is easy to see that for any \(r > 0 \) there exists a point \(y \) of \(l \cap N \) such that

\[
\delta_N(x, y) > r > \delta_M(x, y).
\]

References

POLISH ACADEMY OF SCIENCES
MATHEMATICAL INSTITUTE

Reçu par la Rédaction le 19. 10. 1981