POLEMIKA W SPRAWIE „DYSTRYBUANT TRWAŁOŚCI”

M. FISZ (Warszawa)

 Autor twierdzi, że udowodnił twierdzenie, które cytuję tu dosłownie: „Oznaczmy przez S klasę dystrybuant określonych w przedziale $(0, \infty)$ i mających prawie wszędzie pierwsze pochodne. Oznaczmy przez T taką podklasę S, której elementami są dystrybuanty trwałości. Warunkiem koniecznym i dostatecznym(1) na to, aby dystrybuanta $F(x)$ była elementem klasy T, jest, żeby wyrażenie

$$
(*) \quad \frac{1}{1-F(x)} \cdot \frac{dF(x)}{dx}
$$

było elementem klasy S.”

Nasuwają się tu następujące uwagi.

1. Nie podano nigdzie w cytowanej pracy definicji dystrybuanty trwałości, a więc nie wiadomo, czego dotyczy twierdzenie C. Rajskiego. Autor poprzedza powyższe „twierdzenie” rozumowaniem, które mogłoby służyć za intuicyjne uzasadnienie definicji dystrybuanty trwałości, jeżeli przez to będzie się rozumiała taką dystrybuantę, dla której wyrażenie (*) należy do S.

2. Jak wynika z polskiego oryginału i ze streszczeń obcojęzycznych, autor podjął swe badanie w związku z tym, że — jak twierdzi — dotąd rozwija się w literaturze jedynie wykładniczy rozkład trwałości, a celem

(1) W obydwu streszczeniach obcojęzycznych mowa o warunku dostatecznym.
autora jest rozszerzenie tej klasy. Warto zauważyć, że jeśli $F(x)$ jest dystrybuantą w rozkładzie wykładniczym, to wyrażenie (⋆) nie należy do S.

Istotnie, mówimy $f(x) = \mu \exp(-\mu x)$. Wówczas $1 - F(x) = \exp(-\mu x)$, a więc wyrażenie

$$\frac{f(x)}{1 - F(x)} = \mu$$

nie jest w ogóle dystrybuantą. Wynikałoby stąd, że dystrybuanta $F(x) = 1 - \exp(-\mu x)$ nie może być dystrybuantą rozkładu trwałości przedmiotów. Ponieważ trudno się z takim stanowiskiem zgodzić, gdyż w zastosowaniach spotykamy dość często wykładniczy rozkład „długości życia” różnych zjawisk, to trudno zdefiniować dystrybuantę trwałości jako taką, dla której wyrażenie (⋆) należy do S.

Na zakończenie zwracam uwagę na pewne inne usterki natury formalnej. Po pierwsze, autor oznacza przez S „klasę dystrybuant określonych w przedziale $(0, \infty)$ i mających prawie wszędzie pierwsze pochodne”. Ostatni warunek jest oczywicie zbedny, gdyż każda dystrybuanta jest prawie wszędzie różniczkowalna. Na marginesie warto dodać, że w obydwu streszczeniach obowiązujących do S zalicza się wszystkie dystrybuanty. Po wtóre, rozumowanie na str. 324, wiersze 5-10 od dołu, jest błędne. Albowiem $N - v$ nie jest liczbą stuń nieużytkowych, lecz oczekiwana liczbą takich stuń, a wartość oczekiwana ilorazu dwóch zmiennych losowych nie jest równa ilorazowi wartości oczekiwanych tych zmiennych losowych.

INSTITUT MATEMATYCZNY POLSKEJ AKADEMII NAUK

Nota wpłynęła 18. 7. 1958

C. RAJSKI (Warszawa)

Ad 1°. Ta część mojej pracy, która kończy się w czwartym wierszu od dołu na str. 325, ma na celu ustawnienie wzorów (4)-(7) na podstawie właściwości prób trwałości oraz założenia, że badane przedmioty pochodzą z produkcji ustabilizowanej. Tego rodzaju rozważania często występują w problematyce „operational research” i nazywają się *budową modelu matematycznego* badanego zjawiska. Twierdzenie na str. 326 jest tylko innym sformułowaniem wzorów (4)-(7), a klasa dystrybuant trwałości jest modelem matematycznym przebiegów suśnymania się. Ponieważ wzory (5), (6) i (7) wynikają z obserwacji, więc każdy z nich zawiera pewne twierdzenie, lecz twierdzenie empiryczne, a nie matematyczne. Tym samym twierdzenie na str. 326 jest też twierdzeniem empirycznym, dla którego dowód matematyczny nie jest ani potrzebny, ani możliwy.

Jeśli chodzi o rozkład wykładniczy nieopóźniony, to on tych warunków nie spełnia. Ja o tym wiem, napisałem bowiem w przedostatnim zdaniu na str. 326: „Jeżeli jednakże \(c = 0 \) i \(r = 0 \), to \(G(x) = 1 \) i warunek (5) nie jest spełniony”. Z faktu tego Fisz zdaje się wyciągać wniosek, że zdefiniowana przez mnie klasa dystrybuant trwałości jest obrana niefortunnie, ponieważ nie zawiera ona tak ważnej i często używanej dystrybuanty, jaką jest dystrybuanta wykładnicza nieopóźniona. Wyjaśnienie jest następujące.

Rozważmy ciąg dystrybuant wykładniczych opóźnionych o wartościach opóźnienia \(c \), malejących monotonicznie. Niech np. \(c = b/n \), gdzie \(b \) jest liczbą dodatnią, \(n \) — naturalną. Wówczas ogólny wyraz tego ciągu będzie określony wzorem

\[
F_n(x) = 1 - e^{-(x-b)/n}.
\]

Granicą tego ciągu, gdy \(n \to \infty \), jest dystrybuanta wykładnicza nieopóźniona. Ponieważ jest ona granicą, to można zawsze dobrać taki wyraz ciągu, który będzie od niej różnił się dowolnie mało.
Zatem dystrybuanta wykładnicza nieopóźniona, nie będąc sama dystrybuantą trwałości, jest przybliżeniem dystrybuanty trwałości i to przybliżeniem dowolnie dobrym.

Ad inne uwagi. Jeśli chodzi o rozumowanie na str. 324, wiersze 5-10 od dołu, to niech mi będzie wolno przede wszystkim skorygować zarzut, bo wyrazu \(N^i \) nie ma nie tylko w wymienionych wierszach, ale na całej stronicy 324. Chodzi zapewne o wyraz \(N^i \) we wzorze (1). Jeśli tak jest, to wyjaśnienie jest następujące. Wielkości \(\nu \) powstają drogą kilku operacji arytmetycznych z wielkości \(\Delta \nu_j \), które określiłem na str. 324 w zdaniu rozpoczynającym się w wierszu 13 od góry jako liczby sztuk zużytych w ciągu badania i-tej partii w przedziale czasu zawartym między chwilą \((j-i) \Delta x \) a \(j \Delta x \). Zatem \(\Delta \nu_j \) są to różnice między pewnymi parami realizacji zmiennej losowej, czyli są to liczby, a nie zmienne losowe. Tym samym nie są zmiennymi losowymi wielkości \(\nu \) i zarzut upada. Fisz dał się tu wprowadzić w błąd kilkakrotnie użytemu przez mnie wyrazowi „oczekiwany” w znaczeniu „średni”. Ponieważ obliczanie średniej zachodzi na str. 324 dwukrotnie, należało je jakoś terminologicznie odróżnić, stąd „oczekiwany”. Lepiej było użyć na str. 324 w wierszach 15, 13, 10, 8, i 6 od dołu oraz na str. 325 w wierszu 1 od góry terminu „asymptotycznie średni” (przy jednoczesnych zmianach w niektórych miejscach szyku wyrazów); wówczas tekst nie mógłby być błędnie pojmowany.

Jeśli chodzi o zarzut, że zachodzą różnice między tekstem polskim a streszczeniami obcojęzycznymi, to poprawne są streszczenia.

INSTITUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

Nota wpłynęła 30. 10. 1958

M. FISZ (Warszawa)

Ad 1. Nie mi, niestety nie wiadomo o istnieniu, obok twierdzeń matematycznych, również „twierdzeń empirycznych”, dla których – jak powiada Rajski – „dowód matematyczny nie jest ani potrzebny, ani możliwy”. Jest to punkt zasadniczy w mojej nocie i w całej rozciągłości podtrzymuję go.

Ad 2. Nie tylko dla zwykłego rozkładu wykładniczego, ale także dla rozkładu wykładniczego opóźnionego o dystrybuancie \(F_n(x) = 1 - \exp[-(x-b/n)] \) zachodzi relacja

\[
\frac{1}{1-F_n(x)} \frac{dF_n(x)}{dx} = 1 = \text{const},
\]

Polemika w sprawie „dystrybuant trwałości”
a więc rozkład wykładniczy opóźniony również nie jest „dystrybuantą trwałości”.

Pozostałe moje uwagi, które nazwałem w swej nocie „usterkami formalnymi”, nie mają istotnego znaczenia, ale ponieważ Rajski poświęca tyle miejsca, by je obalić, zmuszony jestem uzasadnić ich słuszność. Termin „wartość oczekiwana” jest powszechnie przyjęty. Co więcej, Rajski używa tego terminu w dyskutowanej pracy w wierszach 15 i 14 od dołu na str. 324 w sensie „najdziej matematycznej”, albowiem w przeciwnym razie nie byłoby prawdą, że (zresztą tylko z prawdopodobieństwem 1) zachodzi relacja

\[\Delta v_f = \lim_{n \to \infty} \Delta v_f^{(n)}. \]

Pozostała relacja ta byłaby nieprawdziwa, gdyby \(\Delta v_f \) nie były zmieniennymi losowymi. Wielkość \(v_f \) nie jest zmienną losową, czego zresztą nigdy nie twierdziłem, lecz wartością oczekivaną.

Nota wpłynęła 19. 1. 1959

C. RAJSKI (Warszawa)

Ad 1°. Gdyby nie istniały twierdzenia empiryczne, nie istniałyby również nauki przyrodnicze. Twierdzeniami empirycznymi są prawa Newtona i prawa Maxwella, zasady termodynamiki i zasada Hamiltona, regulia faz Gibbsa i reguła Lenza oraz setki innych twierdzeń. Źródłem naszego przekonania o prawdziwości twierdzenia empirycznego jest zgodność wysnutyh zaś wniosków z faktami obserwowanymi. Z tego właśnie powodu dla żadnego twierdzenia empirycznego dowód matematyczny, tzn. wyprowadzenie z układu niesprzecznych aksjomatów, nie jest ani potrzebny, ani możliwy.

Ad 2°. Pełny zapis dystrybuanty rozkładu wykładniczego opóźnionego jest

\[F(x) = \begin{cases} 0, & \text{dla } 0 \leq x < b/n, \\ 1 - e^{-(x-b/n)}, & \text{dla } b/n \leq x < \infty, \end{cases} \]

jak to wynika ze wzoru (8) na str. 326. Zatem

\[\frac{1}{1 - F_n(x)} \frac{dF_n(x)}{dx} = \begin{cases} 0, & \text{dla } 0 \leq x < b/n, \\ 1, & \text{dla } b/n \leq x < \infty, \end{cases} \]
a to jest dystrybuanta, mianowicie dystrybuanta zmiennej losowej jednopunktowej.

Ad „inne uwagi”. Ten fragment drugiej noty Fisza powstał na tle poprzednio postawionego zarzutu, opartego na domniemaniu, że w mojej pracy występuje iloraz zmiennych losowych. Obecnie, dyskusja w tym punkcie sprowadziła się do tego, czy wielkości \(\Delta \nu_{ij} \) są liczbami, czy zmiennymi losowymi. Już raz wyjaśnilem, że przez \(\Delta \nu_{ij} \) oznaczylem wyniki pewnych obserwacji, zatem liczby, a nie zmienne losowe, które są funkcjami. Zatem liczbami są również wielkości \(\Delta \nu_{ij}^{(m)} \) oraz wielkości \(\Delta \nu_{ij} \), które powstają z \(\Delta \nu_{ij} \) wyłącznie drogą operacji arytmetycznych. Fisz twierdzi, że wielkości \(\Delta \nu_{ij} \) są zmiennymi losowymi. Gdyby tak było, to również wielkości \(\Delta \nu_{ij}^{(m)} \) oraz wielkości \(\Delta \nu_{ij} \) byłyby zmiennymi losowymi.

Wobec tego w relacji, cytowanej w drugiej nocie Fisza, występują, moim zdaniem, po obu stronach liczby, a zdaniem Fisza — zmienne losowe. Aby dowieść swej tezy Fisz pisze: „Pozna tym relacja ta byłaby nieprawdziwa, gdyby \(\Delta \nu_{ij} \) nie były zmiennymi losowymi”. Zatem relacja ta byłaby, zdaniem Fisza, nieprawdziwa, gdyby wielkości \(\Delta \nu_{ij} \) były liczbami. Ponieważ ja nie znam twierdzenia, które by głosiło, że nie wolno zdefiniować liczby rzeczywistej jako granicy ciągu liczb rzeczywistych, podtrzymuję swój dotychczasowy punkt widzenia i jestem przekonany, iż w mojej pracy iloraz zmiennych losowych nie występuje.

Nota wpłynęła 5. 2. 1959

NOTA REDAKCJI

Niniejsze słowa odnoszą się do kwestii, czy zdanie, wydrukowane kursywą w zeszycie III, 3-4 Zastosowań Matematyki na górze str. 326 w pracy p. Rajskego O dystrybuantach trwałości, wolno nazwać twierdzeniem, jak uczynił to autor na dole str. 325. Zdanie to orzeka, że przynależność funkcji \(F'(x)/(1 - F(x)) \) do klasy dystrybuant jest warunkiem koniecznym i dostatecznym na to, by dystrybuanta \(F(x) \) była tak zwaną „dystrybuantą trwałości”.

Autor rozpoczął swoją pracę od rozważań natury empirycznej, które doprowadziły go do wzorów (4), (5), (6), (7). Wzory te należy zatem uważać za postulaty empiryczne, określające implicite dystrybuantę trwałości. Twierdzenie na str. 326 wynika z nich w sposób formalny, co zresztą wyraża ostatnie zdanie str. 325.
Z chwilą gdy rozważania empiryczne nad pojęciem „dystrybuanty trwałości” zostały skrytualizowane jako układ postulatów wyrażonych matematycznie, należy zdanie wydrukowane kursywną na góry str. 326 uznać za twierdzenie. Dowód tego twierdzenia polega na eliminacji funkcji G z wzorów poprzedzających i z własności tej funkcji.

Nie można nazywać owego zdania „twierdzeniem empirycznym”. Znanie prawo Keplera o torach planet da się wyprowadzić z praw Newtona, a wtedy jest twierdzeniem matematycznym, chociaż jego dowód posługuje się prawami empirycznymi odkrytymi przez Newtona. Te prawa odgrywają rolę aksjomatów w mechanice teoretycznej. W roku 1609 prawo Keplera nie było twierdzeniem, sto lat później stało się twierdzeniem.

Nie ulega dla nas wątpliwości, że brak odgraniczenia tej części pracy, w której konstruuje się postulaty, od tej, w której z nich wysuwa się wnioski, spowodował nieporozumienie; nie byłoby go, gdyby autor poprzedził ostatnie zdanie strony 325 awizem: relacje wyżej sformułowane określają implicity pojęcie „dystrybuanty trwałości”. Redakcja ZM ubolewa nad tym, że nikt z Komitetu Redakcyjnego nie zwrócił na to uwagi.

ПОЛЕМІКА ПО ВОПРОСУ
„ФУНКЦІЯ РАСПРЕДЕЛЕНІЯ ДОЛГОВЕЧНОСТИ”

После опубликования работы Ч. Райского "О функциях распределения долговечности" (Zastosowania Matematyki 3 (1958), стр. 323-328), возникла полемическая переписка между М. Фишем и автором. По техническим причинам Редакция вынуждена ограничить публикацию полемики и помещает лишь по два выступления каждого из дискуссантов и тот от редакции, касающуюся одного из пунктов спора. Поэтому мы не помещаем здесь третьей ноты М. Фишем полученной нами после сдачи настоящего выпуска журнала в набор. Редакция надеется, что опубликованные материалы позволят читателям, интересующимся данным вопросом, выработать свой собственный взгляд на обсуждаемые вопросы.

М. ФИШ (Выпуск)

Ч. Райский "доказал" (Zastosowania Matematyki 3 (1958), стр. 323-328), что если выражение (*) является функцией распределения, то $F(x)$ является "функцией распределения долговечности". Автор этой заметки подчеркивает, что понятие "функции распределения долговечности" не было совсем определено, следовательно "доказанная" теорема лишена содержания.

Стоит также обратить внимание на то обстоятельство, что для показательного распределения выражение (*) не является функцией распределения.
Ч. РАЙСКИЙ (Варшава)

В своей заметке, опубликованной в том же самом томе Zastosowań Matematyki, М. Фиш не отмечает понятия математической теоремы от эмпирической теоремы, называемой часто эмпирическим законом и часто выражаемой при помощи формул. Математическая теорема выводится из множества уже принятых теорем, а эмпирическая теорема является вынашиванием — чаще всего идеализированным — о некоторых фактах. Таким образом, эмпирическая теорема не может быть как доказана, так и опровергнута теоретическим путем. Моя теорема констатирует, что некоторая функция, полученная из функции распределения долговечности, удовлетворяет условиям (5), (6) и (7), которым, как оказалось, удовлетворяет каждая функция распределения.

Условия эти получены из очень общих свойств исследования долговечности при ясно сформулированных упрощающих предположениях. В результате — формулы (5), (6) и (7) эмпирические. Таким образом, рассматриваемая теорема эмпирически и никакое математическое доказательство невозможно, да и не нужно.

М. Фиш обращает внимание на то, что степенное распределение, которое часто употребляется в теории исследования долговечности, не является вообще функцией распределения долговечности в смысле моей теоремы, исходя из того, что класс функций распределения долговечности определенный этой теоремой не полон. Выяснение основывается на том, что каждая степенная неопаздывающая функция распределения является функцией распределения долговечности даже тогда, когда опаздывание произвольно мало. Таким образом, степенная неопаздывающая функция распределения может быть рассматриваема как приближение степенной опаздывающей функции распределения, причем опаздывание настолько мало, что возникающие в результате приближения разности какого угодно рода не могут быть выявлены при помощи измерений.

М. ФИШ (Варшава)

В русском резюме своей ноты пишет Ч. Райский: „Как очень общих предположениях получена следующая теорема“, после чего формулируется „д-теорема“. Однако в математике рассматриваются лишь „математические теоремы“, касающиеся некоторых свойств четко определенных понятий. Мне к сожалению ничего не известно о природе „эмпирических теорем“, для которых — как пишет Райский — „математического доказательства и не требуется и нельзя провести‖.

Что касается следующего дискутируемого вопроса, то как легко проверить, также для опаздального показательного распределения выражение (*) постоянно, следовательно никакое показательное распределение, не является функцией распределения долговечности в смысле „теоремы“ Райского.

Ч. РАЙСКИЙ (Варшава)

Я считаю, что значение термина „эмпирическая теорема“ достаточно хорошо выражается через входящие в него выражения. В естественных науках, в частности в физике, эмпирические теоремы называют законами или правилами.
Наше убеждение о законности эмпирических теорем описывается на основании между полученными от них результатами и эмпирическими данными. Это именно и является тем, что мы называем опытным подтверждением. Ничего подобного не существует для математических теорем, т. к. они должны быть получены на основании принятых систем аксиом, которые — в известных границах — могут быть выбраны произвольно.

При настоящем состоянии исследований моя теорема является рабочей гипотезой, целью которой есть описание поведения предметов подданных исследованию долговечности. Единственным способом доказательства фальсификации этой теоремы является совершение статистических проб, которые могли бы привести к опровержению гипотезы, что действительные долговечности являются реализацией случайной величины, функция распределения которой принадлежит к классу определенных теорем.

Если же дело идет о степенном опаздывающем распределении, то полной формулой для его функции распределения является

\[F(x) = \begin{cases} 0, & \text{для } 0 \leq x < e, \\ 1 - e^{-(x-e)}, & \text{для } e \leq x < \infty, \end{cases} \]

где e некоторое положительное число.

Отсюда имеем

\[\frac{1}{1 - F(x)} \cdot \frac{dF(x)}{dx} = \begin{cases} 0, & \text{для } 0 \leq x < e, \\ 1, & \text{для } e \leq x < \infty, \end{cases} \]

а это и есть функция распределения. Таким образом, опаздывающее степенное распределение является функцией распределения долговечности в смысле моей теоремы.

ЗАМЕТКА РЕДАКЦИИ

Настоящая заметка относится к вопросу, можно ли фразу, напечатанную курсивом в томе III, выпуска 3-4 журнала Zastosowania Matematyki на стр. 326 вверху, в работе Райского О функциях распределения долговечности, назвать теоремой, как сделал это автор на стр. 325 внизу. Эта фраза утверждает, что принадлежность функции \(F'(x)/(1 - F(x)) \) к классу функции распределения является необходимым и достаточным условием того, чтобы функция \(F(x) \) была так называемой „функцией распределения долговечности“.

Автор начинает статью рассуждениями эмпирического характера, которые приводит его к формулам (4), (5), (6) и (7). Формулы эти, таким образом, следует считать эмпирическими постулатами, определяющими также и функцию распределения долговечности. Теорема на стр. 326 вытекает из них формальным образом, как и отмечено последней фразой на стр. 325.

С момента, когда эмпирические рассуждения о понятии „функции распределения долговечности“ скристаллизировались в форме системы математических постулатов, следует предложение напечатать курсивом на стр. 326 вверху, считать теоремой. Доказательство этой теоремы основано на использовании функции \(G \) из предыдущих формул, а также на свойствах самой функции.
Нельзя назвать это предложение „эмпирической теоремой“... Известный закон Кеплера о траекториях планет можно вывести из законов Ньютона и тогда это является математической теоремой, хотя законы Кеплера доказаны при помощи эмпирических законов открытым Ньютоном. Законы Ньютона играют роль аксиом в теоретической механике. В 1609 г. законы Кеплера еще не были теоремами, зато спустя сто лет они ими стали.

Не вызывает сомнений, что отсутствие разграничения той части работы, где строятся постулаты, от той, где из них делаются выводы, привело к недоразумению, которого бы не было, если бы автор предупредил последнюю фразу на стр. 325 предложением: реляции, сформулированные выше, определяют также и понятие „функции распределения долговечности“. Редакция Zastosowań Matematyki соглашает, что никто из Редакционной Коллегии не обратил ранее на это внимание.

CONTROVERSY CONCERNING
“THE LIFE-TESTS DISTRIBUTION FUNCTIONS”

The publication of paper of C. Rajski “On the life-tests distribution functions” (Zastosowania Matematyki 3 (1958), pp. 323-328) has originated the written polemics between M. Fisz and the Author. For the technical reasons we have to restrict the publication of this polemics to 2 notes of each of the opponents and the Editor’s note concerning one of the controversial points. We do not publish the third note of M. Fisz, as we received it after the fascicle has been sent to press. The Editors expect, that the published discussion will allow the reader interested in the discussed questions to form his own point of view.

M FISZ (Warszawa)

C. Rajski “proved” (Zastosowania Matematyki 3 (1958), pp. 323-328) that $F(x)$ is “a life distribution function” if the expression (*) is a distribution function. The present author stresses the fact that the notion of “a life distribution function” has not been defined at all. The theorem “proved” is consequently meaningless.

It is moreover worth-while to note that for the exponential distribution the expression (*) is not a distribution function.

C. RAJSKI (Warszawa)

In his note: On “The life-tests distribution functions” published in the same issue of ZM Mr. Fisz fails to distinguish between the notions of a mathematical theorem and an empirical one, which is more often called an empirical law and frequently expressed by a formula. A mathematical theorem is an inference from a set of adopted axioms, an empirical theorem is a statement — usually an idealized one — concerning some facts.
Thus an empirical theorem can neither be proved nor disproved on any theoretical grounds. My theorem states that a certain function derived from the life-tests distribution functions satisfies conditions (5), (6) and (7) which — rather unexpectedly — are fulfilled by any d. f. These conditions are derived from very general properties of life-tests under clearly stated simplifying assumptions. Accordingly formulas (5), (6) and (7) are empirical ones. Thus the theorem in question is empirical as well and nothing of the nature of a mathematical proof is either required or possible with regard to it.

Mr. Fisz remarks that the exponential d. f., which is widely used in the theory of life-tests, is not a life-tests d.f. in the sense of my theorem, thus alleging that the class of d. f. defined thereby is inadequate. The solution is based on the fact that any delayed exponential d. f. is a life-test d. f., however small the delay may be. Thus an undelayed exponential d. f. may be considered as an approximation to a delayed exponential d. f. with such a small delay that the arising differences of any kind are undetectable by measurement.

M. FISZ (Warszawa)

In the English summary of his note C. Rajski precedes the “theorem” disputed by the following words: “Under very general assumptions the following theorem is deduced”. However, theorems dealt with in mathematics are simply “mathematical theorems” concerning some properties of well defined notions. Unfortunately I know nothing about the nature of “empirical theorems”, for which, as Mr. Rajski says, a “mathematical proof is neither required nor possible”.

As to the next point discussed it is easy to verify that even for the delayed exponential distribution the expression (*) is constant, whence no exponential d. f. is a life-test d. f. in the sense of Rajski’s “theorem”.

C. RAJSKI (Warszawa)

In my opinion the meaning of the term “empirical theorem” is fairly well given by its wording.

In natural sciences, particularly in physics, empirical theorems are called laws or rules. Our belief in the truth of any empirical theorem is based upon the agreement between the conclusions drawn thereof with observational data.

This is what we call experimental confirmation. Nothing of that nature exists for mathematical theorems because they have to be checked against adopted sets of axioms which — within certain limits — may be chosen at will.

In the present state of investigations my theorem is nothing but a working hypothesis aimed at the description of the behaviour of the items under the life-tests. The only way of disproving that theorem is to make a statistical test which would eventually lead to the rejection of the hypothesis that the actually observed lengths of life are the values of a random variable whose d. f. belongs to the class defined in the theorem.
As far as delayed exponential distribution function is concerned the unabridged formula is

\[F(x) = \begin{cases}
0, & \text{if } 0 \leq x < e, \\
1 - e^{-(x-e)}, & \text{if } e \leq x < \infty,
\end{cases} \]

\(e\) being a positive number.

Hence we have

\[\frac{1}{1 - F(x)} \frac{dF(x)}{dx} = \begin{cases}
0, & \text{if } 0 \leq x < e, \\
1, & \text{if } e \leq x < \infty,
\end{cases} \]

and this is a distribution function. Thus the delayed exponential distribution function is the life-test distribution function in the sense of my theorem.

THE EDITOR'S NOTE

These remarks concern the question whether the sentence printed in italics in number III, 3-4 of Zastosowania Matematyki at the top of page 326 in Mr. Rajski's paper *On life-test distribution functions* can be called a theorem, as the author has done at the bottom of page 325. That sentence states that the fact of the function \(F'(x)/(1 - F(x))\) belonging to the class of distribution functions is a necessary and sufficient condition for the distribution function \(F(x)\) to be the so called "life distribution function".

The author begins his paper with consideration of empirical nature which lead him to formulas (4), (5), (6), (7). Those formulas should thus be regarded as empirical postulates defining the life distribution function implicit. The theorem on p. 326 follows from them in a formal way, which is expressed by the last sentence on page 325.

Whereas the empirical considerations of the notion of "life distribution function" have been crystallized as a system of postulates expressed mathematically, the sentence printed in italics at the top of p. 326 should be regarded as a theorem. The proof of that theorem consists in the elimination of function \(G\) from the preceding formulas and from the properties of that function.

The sentence in question cannot be termed an "empirical theorem". The well known law of Kepler on the paths of the planets can be deduced from Newton's laws, and then it is a mathematical theorem although its proof makes use of the empirical laws discovered by Newton. Those laws play the part of axioms in theoretical mechanics. In 1609 Kepler's law was not a theorem, one hundred years later it became a theorem.

We have no doubt that the lack of a dividing line between the part of the paper in which the postulates are constructed and that one in which conclusions are deduced from them has been the cause of the misunderstanding; it would have been avoided if the author had preceded the last sentence on page 325 by the following remark: the relations formulated above define implicit the notion "life distribution function". It is to be regretted that none of the members of the Editing Committee noticed that omission.