On ultra-weak convergence in L^p

by Donald E. Myers (Tucson, Ariz.)

Abstract. Let (φ_n) be a sequence in L^p on the unit circle such that

$$\lim_{n \to \infty} \int f(e^{i\theta})\varphi_n(\theta)d\theta = l(f) \quad \text{exists for all } f \in H^q, \frac{1}{p} + \frac{1}{q} = 1, 1 < p < \infty.$$

Then there exists $\varphi \in L^p$ such that

$$l(f) = \int \frac{f(e^{i\theta})\varphi(\theta)d\theta}{2\pi}$$

for all $f \in H^q$. The result is known for $p = 1, q = \infty$, the purpose of this paper is to supply the proofs for the remaining cases.

1. Introduction. Let Δ denote the unit disk and T its boundary. L^p denotes the usual Lebesgue space considered on T and H^q the Hardy space on Δ. If f is in H^q, then $f(e^{i\theta})$, the boundary function of f, is considered as an element of L^p.

Piranian, Shields and Wells [5] proved the following; which was conjectured by Taylor [6]

Theorem 1. Let the sequence $\{a_0, a_1, \ldots\}$ of complex numbers have the property that for each function $\sum b_n z^n$ in H^∞ the limit

$$\lim_{n \to 1} \sum a_n b_n z^n$$

exists and is finite. Then there exists a function $\varphi \in L^1(0, 2\pi)$ such that

$$a_n = \frac{1}{2\pi} \int_0^{2\pi} \varphi(t)e^{int}dt = \hat{\varphi}(n) \quad (n \geq 0).$$

The converse is true. At the end of [5], they conjecture Theorem 2 which if true would imply Theorem 1. Kahane [2] has shown that Theorem 2 is true if H^∞ is replaced by A. A denotes the subspace, of H^∞, of functions having continuous boundary values. Mooney [4] then completed the proof of Theorem 2 utilizing Kahane's result.

Theorem 2. Let $(\varphi_n) \subset L^1$ such that

$$\lim_{n \to \infty} \int_0^{2\pi} f(e^{i\theta})\varphi_n(\theta)d\theta = l(f)$$
for all \(f \in H^\infty \). Then there exists \(\psi \in L^1 \) such that
\[
 l(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \psi(\theta) d\theta
\]
for all \(f \in H^\infty \).

In this paper we will extend Theorem 2 by replacing \(L^1 \) by \(L^p \) and \(H^\infty \) by \(H^q \), where \(1/p + 1/q = 1 \), \(1 \leq p \leq \infty \). Although the method of the proof is similar it is necessary to separate the cases \(1 < p, q < \infty \) and \(p = \infty, q = 1 \) since \(L^1 \) is not reflexive.

2. Comments on the proof of Theorem 2 and the more general result.

Since \(H^\infty \subset L^1 \), \(1 < p < \infty \), the hypotheses of Theorem 2 are strengthened if \(L^1 \) is replaced by \(L^p \) and \(H^\infty \) by \(H^q \). Therefore, Theorem 2 still asserts the existence of \(\psi \in L^1 \) such that
\[
 l(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \psi(\theta) d\theta
\]
for \(f \in H^\infty \) if the stronger hypotheses are satisfied. To obtain the stronger conclusion by using Theorem 1 would require two seemingly difficult steps, (1) to show that \(\psi \in L^p \), rather than \(\psi \in L^1 \), (2) to show that the representation is valid for all \(f \in H^q \), instead of just \(H^\infty \). Although Mooney [3] did complete the proof of Theorem 2 by extending the validity of the representation from a subspace to all of \(H^\infty \), this does not seem viable when comparing \(H^\infty \) with \(H^q \). In fact, it is much simpler to proceed directly. However, the attempt to proceed from Theorem 2 makes the general result seem plausible. The case \(p = \infty \) and \(q = 1 \) does not seem to be suggested by Theorem 2.

3. The case \(1 < p, q < \infty \).

Theorem 3. Let \(\{ \psi_n \} \subset L^p \), \(1 < p < \infty \), such that
\[
 \lim_{n \to \infty} \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \psi_n(\theta) d\theta = l(f)
\]
exists for all \(f \in H^q \), \(1/p + 1/q = 1 \).

Then there exists \(\psi \in L^p \) such that
\[
 l(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \psi_n(e^{i\theta}) \psi(\theta) d\theta
\]
for all \(f \in H^q \).

Proof. Set
\[
 l_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \psi_n(\theta) d\theta;
\]
then \(l_n \in (H^q)^* \) which by the Hahn–Banach Theorem has an extension \(\hat{l}_n \in (L^p)^* \). Moreover, by the Uniform Boundedness Principle the \(l_n \)'s are uniformly bounded and hence the \(\hat{l}_n \)'s. Since \((L^q)^*\) may be identified with \(L^p \) the \(l_n \)'s may be identified with a bounded subset of \(L^p \). Since \(L^p \) is reflexive bounded subsets are weakly compact, there exists \(\varphi \in L^p \) and a subsequence \(\{\varphi_{n_k}\} \subset L^p \) which converges weakly to \(\varphi \), i.e.

\[
\lim_{k \to \infty} \frac{1}{2\pi} \int_0^{2\pi} g(\theta) \varphi_{n_k}(\theta) d\theta = \frac{1}{2\pi} \int_0^{2\pi} g(\theta) \varphi(\theta) d\theta
\]

for all \(g \in L^q \). If \(f \in H^q \), then

\[
\frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \varphi_{n_k}(\theta) d\theta = \hat{l}_{n_k}(f) = l_{n_k}(f)
\]

but \(\lim_{n \to \infty} l_n(f) = l(f) \) so that

\[
l(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \varphi(\theta) d\theta.
\]

The proof of Theorem 3 is considerably shorter than that of Theorem 2 for several reasons, although it is basically similar. In Kahane's construction it is necessary to restrict \(l_n \) to \(A \) in order to obtain the integral representation for \(l(f) \). Unfortunately the representation is given by a measure so it is then necessary to show that it is absolutely continuous and hence given by an \(L^1 \) function. Because of the restriction to \(A \), Mooney's construction is necessary to show that the representation is valid for \(H^\infty \).

4. The case \(p = \infty, q = 1 \).

Theorem 4. Let \(\{\varphi_n\} \subset L^\infty \) such that

\[
\lim_{n \to \infty} \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \varphi_n(\theta) d\theta = l(f)
\]

exists for all \(f \in H^1 \). Then there exists \(\varphi \in L^\infty \) such that

\[
l(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \varphi(\theta) d\theta
\]

exists for all \(f \in H^1 \).

Proof. Proceeding as in the proof of Theorem 3 set

\[
l_n(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{i\theta}) \varphi_n(\theta) d\theta.
\]
Then \(l_n \in (H^1)^* \) and extends to \(\hat{l}_n \in (L^1)^* \). Since \((L^1)^* \) may be identified with \(L^\infty \), the \(l_n \)'s may be identified with a bounded subset of \(L^\infty \) (use the U.B. Principle again). By Alaoglu’s Theorem, the unit ball of \(L^\infty \) is weak* compact. Without loss of generality we may assume \(\|l_n\| \leq 1 \) so that there is a \(\varphi \in L^\infty \) and a subsequence \(\{\tilde{\varphi}_{nk}\} \) which converges weak* to \(\varphi \), i.e.,

\[
\lim_{k \to \infty} \frac{1}{2\pi} \int_0^{2\pi} g(\theta)\tilde{\varphi}_{nk}(\theta) d\theta = \frac{1}{2\pi} \int_0^{2\pi} g(\theta)\varphi(\theta) d\theta
\]

for all \(g \in L^1 \), where \(\tilde{\varphi}_{nk} \) is identified with \(\hat{l}_{nk} \) which in the extension of \(l_n \). For \(f \in H^1 \)

\[
\frac{1}{2\pi} \int_0^{2\pi} f(e^{it})\tilde{\varphi}_{nk}(\theta) d\theta = \hat{l}_{nk}(f) = \tilde{l}_{nk}(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it})\varphi_{nk}(\theta) d\theta
\]

and by hypothesis

\[
\lim_{n \to \infty} \tilde{l}_n(f) = l(f)
\]

so

\[
\lim_{n \to \infty} \frac{1}{2\pi} \int_0^{2\pi} f(e^{it})\varphi_{nk}(\theta) d\theta = l(f) = \frac{1}{2\pi} \int_0^{2\pi} f(e^{it})\varphi(\theta) d\theta.
\]

Combining Theorems 2, 3, 4 gives the desired complete general result.

4. Results. E. A. Heard [1] has announced a new proof of the weak sequential completeness of \(L^1 \) using Kahane’s results. A similar approach to the weak sequential completeness of \(L^p \), \(1 < p < \infty \), is of no consequence, however, since the reflexive property was used in the proof of Theorem 3.

Unlike Kahane’s and Mooney’s results, Theorems 3 and 4 are independent of dimension, that is both generalize to \(\Delta^N \) and \(T^N \) without any change in the proofs as follows.

Theorem 5. Let \(\Delta^N \) and \(T^N \) denote the \(N \)-dimensional polydisc in \(C^N \) and its distinguished boundary, \(N \geq 1 \). Let \(1 < p \leq \infty \), \(1/p + 1/q = 1 \). If \(\{\varphi_n\} \subset L^p(T^N) \) such that

\[
\lim_{n \to \infty} \tilde{l}_n(f) = \lim_{n \to \infty} \int_{T^N} f^* \varphi_n = l(f)
\]

exists for all \(f \in H^q(\Delta^N) \) (\(f^* \) is the boundary function of \(f \)), then there exists \(\varphi \in L^p(T^N) \) such that

\[
l(f) = \int_{T^N} f^* \varphi
\]

for all \(f \in H^q(\Delta^N) \).
As observed by Kahane the hypothesis of Theorem 2 is the existence of
\[\lim_{n \to \infty} \sum_{k=0}^{\infty} a_{n,k} b_k, \] where \(\varphi_n(\theta) = \sum_{k=-\infty}^{\infty} a_{n,k} e^{-ik\theta}, \) for all \(\sum_{k=0}^{\infty} b_k e^{ik\theta} \in H^\infty(\Delta). \)

The conclusion of the theorem is \(\lim_{n \to \infty} a_{n,k} = \int \varphi(\theta) e^{ik\theta} d\theta \) for some \(\varphi \in L^1(\mathbb{T}). \) Theorem 1 is a special case of this re-statement. In like manner Theorems 3 and 4 can be re-stated to give results analogous to Theorem 1.

An example. In the proofs of Theorems 2, 3, 4, 5 a crucial step is the extraction of a convergent subsequence. This convergent subsequence is obtained by the weak* sequential compactness of the unit ball, rather than just weak* compactness; and separability is a sufficient condition. The following example found in [3], p. 311, shows that in general separability can not be omitted.

By the natural imbedding \(l^1 \) is a subspace of \((l^\infty)^* \) then \(\{e_k\} \subset l^1 \) is a bounded sequence in \((l^\infty)^* \) but no subsequence is weakly convergent in \((l^\infty)^* \).

References

Reçu par la Rédaction le 25. 2. 1974