A PROBLEM OF INVARIANCE FOR LEBESGUE MEASURE

BY

JAMES FICKETT AND JAN MYCIELSKI (BOULDER, COLORADO)

Let \(q(\cdot, \cdot) \) be a metric on \(\mathbb{R}^n \) which is invariant under translations, i.e.,

\[q(x+z, y+z) = q(x, y) \quad \text{for all } x, y, z \in \mathbb{R}^n, \]

and induces the usual topology of \(\mathbb{R}^n \), i.e.,

\[\lim_{\|x\| \to 0} q(0, x) = 0 \quad \text{and} \quad \lim_{\|x\| \to 0} \|x\| = 0, \]

where \(\|\cdot\| \) is the usual Euclidean norm in \(\mathbb{R}^n \).

For any sets \(A, B \subseteq \mathbb{R}^n \) we say that \(A \) is \(q \)-isometric to \(B \) if there exists a bijection \(f: A \to B \) such that \(q(f(x), f(y)) = q(x, y) \) for all \(x, y \in A \).

\(\lambda(\cdot) \) denotes the \(n \)-dimensional Lebesgue measure in \(\mathbb{R}^n \).

It was proved in [1] that

(*) For every two open sets \(A, B \subseteq \mathbb{R}^n \), if \(A \) is \(q \)-isometric to \(B \), then \(\lambda(A) = \lambda(B) \).

Problem. Is (*) true for all Borel sets \(A, B \subseteq \mathbb{R}^n \)? (P 1085)

We do not know the answer even for \(n = 1 \). We will prove that the answer is positive under additional conditions on \(q \).

Theorem. If there exist constants \(\alpha, \beta > 0 \) such that for every open \(q \)-ball \(B \) of diameter less than or equal to \(\beta \) there exists a parallelotope \(P \subseteq B \) such that \(\lambda(P) \geq \alpha \lambda(B) \), then \(q \)-isometric Borel sets have the same Lebesgue measure.

Proof. Let \(C \) be the unit cube in \(\mathbb{R}^n \). Let \(\mathcal{B} \) be the family of all open \(q \)-balls in \(\mathbb{R}^n \). For any \(t > 0 \), let \(E(t) \) be the least number of balls in \(\mathcal{B} \) of diameter \(t \) necessary to cover \(C \), and put \(\delta(t) = 1/E(t) \). Now, with coverings from \(\mathcal{B} \), we define the Hausdorff \(h \)-measure \(\mu_h \) on \(\mathbb{R}^n \) (see [3]).

Clearly, \(q \)-isometric Borel sets have the same \(\mu_h \)-measure. To prove our theorem it is enough to show that \(0 < \mu_h(C) < \infty \). In fact, by the uniqueness of Haar measure, this implies \(\mu_h = c\lambda \) for some constant \(c > 0 \), and hence the \(q \)-invariance of \(\lambda \).
First, for any $t > 0$ there exist balls $B_1, \ldots, B_{E(t)} \in \mathcal{A}$ of \mathfrak{g}-diameter t with $C \subseteq B_1 \cup \ldots \cup B_{E(t)}$. Hence

$$\mu_\mathfrak{g}(C) \leq \sum_{i=1}^{E(t)} h(t_i) = 1.$$

Next, let $B_1, \ldots, B_n \in \mathcal{A}$ cover C, and let the \mathfrak{g}-diameter of B_i equal t_i. If P is a parallelootope of sufficiently small diameter, then C can be covered with less than $2/\lambda(P)$ translates of P. Hence, if t_i is sufficiently small, then

$$E(t_i) < 2/\lambda(P_i) < 2/(a\lambda(B_i)),$$

where P_i is the parallelootope in B_i given by the assumption of the theorem. Thus

$$h(t_i) > a\lambda(B_i)/2.$$

Since $\lambda(B_i) \geq 1$, we have

$$\sum_{i=1}^{n} h(t_i) \geq a/2.$$

Therefore $\mu_\mathfrak{g}(C) \geq a/2$, which completes our proof.

Corollary 1. If there exist constants $\alpha, \beta > 0$ such that for every \mathfrak{g}-ball B of diameter less than or equal to α there exist Euclidean balls B_0 and B_1 of Euclidean diameters r_0 and r_1, respectively, with

$$B_0 \subseteq B \subseteq B_1 \quad \text{and} \quad r_0/r_1 \geq \beta,$$

then \mathfrak{g}-isometric Borel sets have the same Lebesgue measure.

For the proof it is enough to check that the assumptions of the Theorem are satisfied.

The function $\mathcal{Q}(0, x)$ is continuous, but it could be very irregular at 0. We know only one positive property:

Proposition. There exist $\alpha, \beta > 0$ such that $\mathcal{Q}(0, x) \geq \beta \|x\|$ whenever $\|x\| < \alpha$.

Proof. Let $\varepsilon, \eta > 0$ be arbitrary and choose $\delta > 0$ such that $\|x\| < \delta$ implies $\mathcal{Q}(0, x) < \varepsilon$. Assuming the proposition false, we infer that there exists an x with $0 < \|x\| < \delta$ and $\mathcal{Q}(0, x) < \eta \|x\|$. Then, by the triangle inequality,

$$\mathcal{Q}(0, [1/\|x\|]x) \leq [1/\|x\|] \mathcal{Q}(0, x) \leq [1/\|x\|] \eta \|x\| \leq \eta,$$

where $[\cdot]$ is the greatest integer function. Hence

$$\mathcal{Q}(0, x/\|x\|) \leq \mathcal{Q}(0, [1/\|x\|]x) + \varepsilon \leq \eta + \varepsilon.$$

It follows that there exist $y \in S^{n-1}$ (unit sphere in \mathbb{R}^n) with $\mathcal{Q}(0, y)$ as small as we wish. From compactness of S^{n-1} and continuity of \mathcal{Q} it follows that $\mathcal{Q}(0, y) = 0$ for some $y \in S^{n-1}$. But this is a contradiction.
COROLLARY 2. If there exist constants \(\gamma, \delta > 0 \) such that

\[
\varrho(0, x) \leq \gamma \|x\| \quad \text{for} \quad \|x\| < \delta
\]

or else there exists an \(a > 0 \) such that

\[
\varrho(0, x) < \varrho(0, y) \quad \text{for} \quad \|x\| < \|y\| < a,
\]

then \(\varrho \)-isometric Borel sets have the same Lebesgue measure.

Proof. Assume (1). Then, by the Proposition, there exist \(\sigma, \tau > 0 \) such that

\[
\sigma \|x\| \leq \varrho(0, x) \leq \gamma \|x\| \quad \text{for} \quad \|x\| < \tau.
\]

Thus Corollary 1 applies with \(a = \tau \) and \(\beta = \sigma/\gamma \).

Assume (2). Then open \(\varrho \)-balls of sufficiently small diameters are Euclidean, and Corollary 1 applies again. Thus the proof is completed.

Corollary 2 applies to such familiar metrizations of \(\mathbb{R}^n \) as metrizations by homogeneous norms or metrizations of the form

\[
\frac{\|x-y\|}{1+\|x-y\|} \quad \text{or} \quad \sqrt{\|x-y\|}.
\]

However, it is easy to produce metrizations to which Corollary 1 is applicable but Corollary 2 is not.

Other results related to this paper were proved in [2].

REFERENCES

Reçu par la Rédaction le 7. 5. 1977