MOST MARKOV OPERATORS ON $C(X)$
ARE QUASI-COMPACT AND UNIQUELY ERGODIC

BY

RYSZARD RĘBOWSKI (WROCŁAW)

1. Uniquely ergodic Markov operators. We denote by $C(X)$ the Banach space of continuous real-valued functions on a compact Hausdorff space X. A linear operator T on $C(X)$ which is positive ($f \geq 0 \Rightarrow Tf \geq 0$) and takes 1 into 1 is said to be Markov. A probability (Radon) measure μ on X is said to be T-invariant if $T^\mu \mu = \mu$. By the Markov–Kakutani fixed point theorem the set of all invariant probability measures is non-empty. T is uniquely ergodic if there exists only one invariant probability measure. It is well known (see, e.g., [8]) that T is uniquely ergodic if and only if the Cesàro means

$$A_n = n^{-1}(I + T + \ldots + T^{n-1})$$

converge in the strong operator topology to a one-dimensional projection which necessarily is of the form $E_\mu f = (\mu, f) 1$, where μ is a probability measure on X.

T is said to be uniformly ergodic if the norm closed convex hull of \{ $T^n; n \geq 0$ \} contains an operator P such that $TP = P$ (see [7]). If T is a uniformly ergodic Markov operator on $C(X)$, then by, e.g., Proposition 1 in [7], the Cesàro means A_n converge in the norm topology.

A Markov operator T is said to be quasi-compact if $\|T^n - K\| < 1$ for some positive integer n and some compact operator K. It is well known (see [9]) that quasi-compactness implies uniform ergodicity.

We shall use the above results to prove Lemma 2.

LEMMA 1. Let a Markov operator T, a probability measure μ, and $0 \leq \alpha < 1$ be given. Then the iterates of the operator $S = \alpha T + (1-\alpha)E_\mu$ converge in the norm topology to a one-dimensional projection.

Proof. It is easily seen that

$$S^n = \alpha^n T^n + E_{\mu^n} \quad \text{for some } \mu_n \in C^*(X).$$

Let ν be an S-invariant probability measure. Then

$$\|S^n - E_\nu\| \leq \alpha^n + \|E_\nu - E_{\mu^n}\| = \alpha^n + \|E_\nu S^n - E_{\mu^n}\|$$

$$= \alpha^n + \|\alpha^n E_\nu T^n\| \leq 2\alpha^n.$$
By Lemma 1, the uniquely ergodic quasi-compact Markov operators are norm dense in the set of Markov operators on \(C(X) \).

Lemma 2. If there exists a sequence \((\mu_k) \) of probability measures on \(X \) such that

\[
\| A_{n_k} - E_{\mu_k} \| \rightarrow 0,
\]

then \(T \) is quasi-compact and uniquely ergodic.

Proof. For sufficiently large \(k \) the Markov operators \(A_{n_k} \) are quasi-compact. Hence, for those \(k \), the Cesàro means \(m^{-1} \sum_{j=0}^{m-1} A_{n_k}^j \) converge in the norm operator topology to a projection \(P_k \). Clearly, \(P_k A_{n_k} = P_k \). Moreover, we have \(P_k A_n = A_n P_k \) for all \(k \) and \(n \). Hence

\[
\| P_k - E_{\mu_k} \| = \| P_k A_{n_k} - P_k E_{\mu_k} \| \leq \| A_{n_k} - E_{\mu_k} \| \rightarrow 0.
\]

Since

\[
\| P_j - P_k A_{n_j} \| \leq \| P_j - E_{\mu_j} \| + \| P_k E_{\mu_j} - P_k A_{n_j} \| \rightarrow 0
\]

uniformly in \(k \), and

\[
\| P_k A_{n_j} - P_k \| \leq \| P_k - E_{\mu_k} \| + \| E_{\mu_k} - P_k A_{n_j} \|
\]

\[
= \| P_k - E_{\mu_k} \| + \| A_{n_j} E_{\mu_k} - A_{n_j} P_k \| \rightarrow 0
\]

uniformly in \(j \), the sequence \((P_k) \) is Cauchy. As \(A_{n_k}^j \) belong to the convex hull \(\text{co} \{ T^n; \ n \geq 0 \} \) for all \(k, j \), the operators \(P_k \) and \(P := \lim P_k = \lim E_{\mu_k} \) belong to the closure of \(\text{co} \{ T^n; \ n \geq 0 \} \). Furthermore, \(PT = TP = P \), so \(T \) is uniformly ergodic. Hence \(T \) is quasi-compact and uniquely ergodic since \(P = \lim E_{\mu_k} = \lim A_k \) is one-dimensional (see, e.g., Proposition 1 in [7] and Theorem 1 in [6]).

Theorem 1. The uniquely ergodic quasi-compact operators form a dense \(G_\delta \)-set for the norm topology in the set of Markov operators on \(C(X) \).

Proof. Let \(\mathcal{U} \) be the set of all Markov operators \(T \) for which the Cesàro means \(A_n \) converge in the norm topology to a one-dimensional projection. By Theorem 1 in [6], \(\mathcal{U} \) consists of all uniquely ergodic quasi-compact operators. Let

\[
\mathcal{U}_1 = \bigcap_{k} \bigcap_{n} \bigcup_{m \geq n} \bigcup_{\mu} \{ T; \ T \text{ is Markov and } \| A_m - E_{\mu} \| < 1/k \},
\]

where \(\bigcup \) is the union over all probability measures on \(X \). Clearly, \(\mathcal{U} \subset \mathcal{U}_1 \) and \(\mathcal{U}_1 \) is a \(G_\delta \)-set. By Lemma 2, each \(T \) from \(\mathcal{U}_1 \) is uniquely ergodic and quasi-compact, so \(\mathcal{U} = \mathcal{U}_1 \). By the remark following Lemma 1, \(\mathcal{U} \) forms a norm dense subset.
2. Stochastic operators on L^1. In this section we apply Theorem 1 to some stochastic operators. Let (Ω, Σ, m) be a probability space. A linear operator T on $L^1(m)$ is said to be {f stochastic} if T is positive (i.e., $f \geq 0 \Rightarrow Tf \geq 0$) and satisfies the equality $T^*1 = 1$ (or, equivalently, $f \geq 0 \Rightarrow \|Tf\| = \|f\|$). The set of all stochastic operators will be denoted by \mathcal{S}.

A stochastic operator T is said to be {f conservative} if $\sum_{n=1}^\infty T^n f = \infty$ a.e. for every (or, equivalently, for some) strictly positive function $f \in L^1(m)$ (see, e.g., [2], Chapter 2). The set of all conservative operators in \mathcal{S} will be denoted by \mathcal{C}. The set of all stochastic operators T for which $T^*1_A = 1_A$ implies $m(A)(1 - m(A)) = 0$ ($A \in \Sigma$) will be denoted by \mathcal{O}.

In this section we discuss operators from $\mathcal{S} \cap \mathcal{C}$, the set of conservative and ergodic stochastic operators. In [5] and [1] topological properties of $\mathcal{C} \cap \mathcal{O}$ have been studied. It has been shown (for $\Omega = [0, 1]$) that conservative and ergodic operators form a dense G_δ-set for both strong operator and norm topologies in \mathcal{S}. The Harris operators form an important subset of $\mathcal{C} \cap \mathcal{O}$. Let $T \in \mathcal{C} \cap \mathcal{O}$ and $T^n = Q_n + R_n$, where Q_n is a positive integral operator with kernel $q_n(x, y)$, and R_n is such that there is no non-zero integral operator K with $0 \leq K \leq R_n$ (see [2], Chapter 5, and [3]). T is said to be a {f Harris operator} if $Q_n \neq 0$ for some $n \geq 1$ (see [2] and [3]).

By the Gelfand–Naimark theorem there is a 0-dimensional compact Hausdorff space \hat{X} such that $L_\infty(\hat{X})$ and $C(\hat{X})$ are isometrically isomorphic. For each $T \in \mathcal{S}$ let \hat{T} denote the corresponding operator on $C(\hat{X})$. Clearly, \hat{T} is a Markov operator. If $T \in \mathcal{C}$, then \hat{T} is uniquely ergodic and quasi-compact if and only if $T \in \mathcal{C} \cap \mathcal{O}$ and T^* is quasi-compact on $L_\infty(m)$ (see Theorem 4.1 in [4]).

Now we can prove the following

Theorem 2. The conservative and ergodic quasi-compact operators form a dense G_δ-set for the norm topology in \mathcal{S}.

Proof. From Theorem 1 and the remark above, the conservative and ergodic quasi-compact operators form a G_δ-subset of \mathcal{C} for the norm topology. As in [5] (Lemma 2) we can show that the conservative operators form a G_δ-set for the norm (even for strong operator) topology in \mathcal{S}. Hence the conservative and quasi-compact operators, being an intersection of two G_δ's, form a G_δ-set for the norm topology in \mathcal{S}.

To prove the proof, it remains to show that this set is norm dense in \mathcal{S}. Let $T \in \mathcal{S}$. Then for each α ($0 \leq \alpha < 1$) the operator $S = \alpha T + (1 - \alpha) E_m$ is conservative, ergodic and quasi-compact. Indeed, by Lemma 2 in [1], S has an equivalent invariant probability measure μ, and therefore S is conservative. Clearly, S is ergodic. Similarly as in the proof of Lemma 1, S^n converge to E_μ in the norm topology, so S is quasi-compact. Clearly, $S = S(\alpha) \to T$ in the norm topology.
Now, from Theorem 4.1 in [4] we obtain

Corollary. The set of Harris operators is norm residual in the set of stochastic operators.

I would like to thank A. Iwanik for many helpful remarks during the preparation of this note.

References

Institute of Mathematics
Technical University, Wroclaw

Reçu par la Rédaclion le 15.3.1982