On the absolute differentiation of geometric object fields

by Ivan Kolář (Brno)

The main purpose of the present paper is to develop an invariant algorithm (based on the works of É. Cartan) for higher order absolute differentiation of arbitrary geometric object fields.

The absolute (or covariant) differentiation was first studied for some special geometric object fields (mostly tensor fields). When Ehresmann introduced the general definition of a connection on a principal fibre bundle and when the general concept of a geometric object field was clarified within the framework of the theory of fibre bundles (a complete comparison with the classical definition of geometric objects in the sense of Wundheiler was given by Kucharzewski and Kuczma, [13], see also [12]), some authors treated the general problem of absolute differentiation. According to our opinion, there are three main points of view to this question: the axiomatic approach, [1], [15], a definition by Crittenden, [2], and, last but not least, a paper by Ehresmann, [5]. In this paper, Ehresmann outlines only the main ideas, but he clarifies the operations of higher order. A detailed development of his ideas (as given in [7]) shows that the higher order (i.e. iterated) absolute differentiation is closely related to the prolongations of a connection. This approach is essentially based on the concept of a semi-holonomic jet of higher order introduced in [3].

Since the present paper deals with the absolute differentiation of higher order, it is based on [5] and [7]. To show the connections with other points of view, we deduce that the definitions by Ehresmann (in the case of first order) and Crittenden are equivalent (the equivalence of the axiomatic approach with the definition by Crittenden was proved by Szybiak [15]). In what follows, we use essentially our results of [8] and [9]. In Section 1 it is shown that the invariant formula for the absolute differential of first order can be obtained by a simple specialization of Proposition 1 of [9]. In Section 2 we deduce a “recurrence formula”, which is applied to the proof of our main result in the last section.

Our considerations are performed in the category C^∞. The standard notation of the theory of jets is used throughout the paper, cf. [7].
I. On the absolute differential of the first order. Let $P(B, G; \pi)$ be a principal fibre bundle and let $E(B, F, G, P)$ be a fibre bundle associated with P. The elements of E are the equivalence classes $\{(u, s)\}, u \in P, s \in F$, with respect to the equivalence relation $(u, s) \sim (ug, g^{-1}(s))$. Hence every $u \in P_x, x \in B$, determines a diffeomorphism (denoted by the same symbol) $u: F \to E_x, s \mapsto \{(u, s)\}$. Thus we have a mapping of $P \boxtimes E$ (= the fibre product over B of P and E) into F, $(u, z) \mapsto u^{-1}(z)$, cf. [9]. The concept of a geometric object field is used in two equivalent forms, which we call the direct or the indirect form, respectively, [6]. A geometric object field in its direct form is a cross section $\sigma: B \to E$, while the indirect form of σ is the mapping

$$u \mapsto u^{-1}(\sigma(\pi(u)))$$

of P into F.

Let $\Phi = PP^{-1}$ be the groupoid associated with P, see e.g. [14]. Every element of Φ is of the form $\bar{u}u^{-1}, u, \bar{u} \in P$, and it can be regarded as a diffeomorphism $E_x \to E_{\bar{x}}, x = \pi(u), \bar{x} = \pi(\bar{u})$, which is the composition of $u^{-1}: E_x \to F$ and $\bar{u}: F \to E_{\bar{x}}, \bar{u}u^{-1}(z) = \bar{u}(u^{-1}(z)), z \in E_{\bar{x}}$. An element of connection (of first order) on Φ at $x \in B$ is a 1-jet at x of a local mapping $\lambda(y)$ of B into Φ of the form $\lambda(y) = \varrho(y)[\varrho(x)]^{-1}$, where $\varrho(y)$ is a local cross section of P. Denote by $Q^1(\Phi)$ the fibre bundle over B of all elements of connection on Φ; a connection (of first order) on Φ is a cross section $C: B \to Q^1(\Phi)$.

If $\sigma: B \to E$ is a cross section, then $\lambda^{-1}(y)(\sigma(y))$ is a local mapping of B into E_x. According to Ehresmann [5], the value of the absolute differential $V\sigma$ of σ at x with respect to C is defined by

$$V\sigma(x) = j^1_x[\lambda^{-1}(y)(\sigma(y))] \epsilon J^1_x(B, E_x).$$

Set $F^1(E) = \bigcup_{x \in B} J^1_x(B, E_x)$, which is an associated fibre bundle of E. (If $u \in P_x, v \in H^1(B)$ and ϱ is an element of $F^1(E)$ over x, then $\varrho u T^1_x(E_x)$ and $u^{-1}(\varrho v) \epsilon T^1_x(F)$.) Hence $V\sigma$ is a cross section of $F^1(E)$.

Considering a connection I on P and a geometric object field in indirect form $\Sigma: P \to F$, Crittenten [2] defines the absolute differential $V\Sigma$ of Σ with respect to I as follows. For every $u \in P$, $V\Sigma$ is a linear map of $T_x(B)$ into $T_{\Sigma(u)}(F)$ determined by

$$V\Sigma(X) = d\Sigma(\bar{X}_u), \quad X \in T_x(B), \quad \bar{x} = \pi(u),$$

where \bar{X}_u denotes the horizontal lift of X at u. But this linear map is identified with a 1-jet of B into F with source x and target $\Sigma(u)$. If we further choose an element $v \in H^1(B)$, then the composition of $V\Sigma$ and v is a 1-jet of R^n into F with source 0, $n = \dim B$, i.e. an element of $T^1_x(F)$.

From this point of view, $V\Sigma$ can be interpreted as a mapping of $H^1(B) \cong P$ into $T^n_1(P)$.

We have remarked in [7] that a connection on P can be considered as a G-invariant cross section of P into J^1P. Every connection Γ on Φ determines uniquely a connection Γ' on P as follows. If $C(x) = j^1_x\lambda(y)$ and $u \in P_x$, then $\lambda(y)$ is uniquely expressed as $\lambda(y) = g(y)u^{-1}$ and we put $\Gamma(u) = j^1_xg(y)$; this connection Γ is said to be the representative of C on P, [7]. Now, the comparison of the definitions by Ehresmann and Crittenden is given by

Lemma 1. If the connection Γ' on P represents the connection C on PP^{-1} and $\Sigma: P \to E$ is the indirect form of $\sigma: B \to E$, then the absolute differential $V\Sigma$ of Σ with respect to Γ', according to Crittenden, is the indirect form of the absolute differential $V\sigma$ of σ with respect to C, according to Ehresmann.

Proof. Let $u \in P_x$ and $X \in T_x(B)$, $X = j^1_x\gamma(t)$, where γ is a curve on B. If $\Gamma(u) = j^1_xg(y)$, then $\tilde{X}_u = j^1_xg(\gamma(t))$ and

$$d\Sigma(\tilde{X}_u) = j^1_0[g^{-1}(\gamma(t)) \sigma(\gamma(t))]$$

by (1). On the other hand, $C(x) = j^1_x[g(y)u^{-1}]$ and

$$u^{-1}(V\sigma) = j^1_x[g^{-1}(y)\sigma(y)].$$

Comparing (4) and (5), we obtain Lemma 1.

We are now going to deduce the invariant formula for $V\sigma$. In [8] we have defined the first prolongation $W^1(P)$ of P as the space of all 1-jets with source $(0, e)$ of the local isomorphisms of $R^n \times G$ into P. (An analogous subject is also treated by Szybiak [16].) We have shown that $W^1(P)$ equals to the fibre product $H^1(B) \cong J^1P$ and it has a natural structure of a principal fibre bundle over B with structure group G_n^1, which is the semidirect product $L^1_n \cong T^1_n(G)$ of the groups L^1_n and $T^1_n(G)$ with respect to the action $S \mapsto Sy$ of L^1_n on $T^1_n(G)$, $y \in L^1_n$, $S \in T^1_n(G)$. We have also introduced the canonical $(R^n \oplus g)$-valued form θ_1 of $W^1(P)$. There is a natural projection $\mu: W^1(P) \to H^1(B)$ and the diagram

$$\begin{array}{ccc}
R^n \oplus g & \xleftarrow{\theta_1} & T(W^1(P)) \\
\mu \downarrow & & \downarrow \mu_2 \\
R^n & \xleftarrow{\theta_1} & T(H^1(B))
\end{array}$$

is commutative, provided θ_1 means the classical canonical form of $H^1(B)$.

Consider a connection $\Gamma: P \to J^1P$. Set $R(\Gamma) = H^1(B) \cong \Gamma(P) \in W^1(P)$ and denote by μ the restriction of μ to $R(\Gamma)$, so that the projections $\tilde{\mu}: R(\Gamma) \to H^1(B)$ and $\beta: R(\Gamma) \to P$ determine an identification τ of $R(\Gamma)$.
and \(H^1(B) \times P, \tau(U) = (\mu(U), \beta U) \). There is a natural injection \(g \mapsto j_0^1 \hat{g} \) of \(G \) into \(T_n^1(G) \), where \(\hat{g} : R^n \to G \) is the constant mapping \(x \mapsto g \); in this sense we may write \(G \subset T_n^1(G) \). Then \(T_n^1 \times G \) is a subgroup of \(G' = L^1_n \times T_n^1(G) \).

Lemma 2. The space \(R(\Gamma) \) is a reduction of the principal fibre bundle \(W^1(P) \) to \(L_n^1 \times G \subset G' \). Conversely, every reduction of \(W^1(P) \) to \(L_n^1 \times G \) determines a connection on \(P \).

Proof. An equivalent assertion for connections on the associated groupoid was deduced by Que [14].

Proposition 1. Let \(\hat{\theta}_1 \) be the restriction of the canonical form of \(W^1(P) \) to \(R(\Gamma) \), let \(\omega \) be the fundamental form of connection \(\Gamma \) and let \(\varphi_1 \) be the canonical form of \(H^1(B) \). Then the diagram

\[
\begin{array}{ccc}
T(P) & \xrightarrow{\omega} & R^n \oplus g \\
\uparrow \rho_2 & & \downarrow \rho_1 \\
T(\Gamma) & \xrightarrow{\hat{\theta}_1} & T(H^1(B)) \\
\end{array}
\]

is commutative.

Proof. According to [8], every \(U \in W^1(P), \beta U = u \), determines a linear isomorphism \(\hat{U} : R^n \oplus g \to T_u(P) \) such that the restriction of \(\hat{U} \) to \(\{0\} \oplus g \) is the standard identification of \(g \) and \(T_u(P) \). By definition, if \(X \in T_u(W^1(P)) \), then \(\theta_1(X) = \hat{U}^{-1}(X) \), where \(\hat{X} = \beta_* X \in T_u(P) \). But \(U \in R(\Gamma) \) implies that \(\hat{U} \) transforms \(R^n \oplus \{0\} \) into \(\Gamma(u) \) so that \(\rho_2 \hat{\theta}_1(X) \), \(X \in T_u(R(\Gamma)) \), is the projection of \(\hat{U}^{-1}(X) \) into \(g \) in the direction of \(\hat{U}^{-1} \Gamma(u) \). On the other hand, \(\omega(X) \) is constructed by projecting \(X \) into \(T_u(P) \) in the direction of \(\Gamma(u) \) and applying the standard identification of \(T_u(P) \) and \(g \). Hence the top quadrangle commutes. The commutativity of the bottom quadrangle follows immediately from (6), Q.E.D.

Consider a cross section \(\sigma : B \to E \). Its first prolongation \(j^1 \sigma \) is a cross section \(B \to J^1 E \). Since \(J^1 E \) is an associated bundle of the symbol \((B, T^1_0(F), G^1_0, W^1(P)) \), [9], the indirect form of \(j^1 \sigma \) is a mapping \(\Sigma_1 : W^1(P) \to T^1_0(F) \). On the other hand, connection \(\Gamma \) represents a connection \(C \) on \(PP^{-1} \) and the absolute differential \(V \sigma \) of \(\sigma \) with respect to \(C \) is a cross section of \(\mathcal{F}^1_0(E) \), so that its indirect form is a mapping of \(H^1(B) \) into \(T^1_0(E) \).

Proposition 2. For every \(U \in R(\Gamma) \) it holds

\[
\Sigma_1(U) = (V \Sigma)(\tau(U)).
\]
Proof. Let U be 1-jet of a local isomorphism of $\mathbb{R}^n \times G$ into P determined by a pair (φ, ϱ), where φ is a local diffeomorphism of \mathbb{R}^n into B and ϱ is a local cross section of P, $\varphi(0) = x$, $\varrho(x) = u$. Then

$$\Sigma(U) = j^0_\varphi[\varrho^{-1}(\varphi(y))\{\varrho(\varphi(y))\}],$$

see [9]. On the other hand, $\tau(U) = (j^0_\varphi, u)$ and $C(x) = j^1_\varrho[\varrho(y)u^{-1}]$, so that

$$(\varphi \Sigma)(\tau(U)) = u^{-1}[(\varphi \Sigma)(j^0_\varphi)] = u^{-1}j^0_\varrho[\varrho^{-1}(\varphi(y))\{\varrho(\varphi(y))\}] = \Sigma_1(U),$$

Q.E.D.

Consider some local coordinates y^a on F. Let ϖ^a be a basis of \mathfrak{g}^* an let

$$dy^p + \eta^a_p(y^q)\varpi^a = 0, \quad p, q, \ldots = 1, \ldots, \dim F;$$

$$a, \beta, \ldots = 1, \ldots, \dim G,$n be the equations of the fundamental distribution on $G \times F$. In [9] we have deduced the following assertion. Let \bar{a}^p be the coordinate functions of a geometric object field $\sigma: B \rightarrow E$; then the coordinate functions a^p, a^q_i of $j^1\sigma$ on $W^1(P)$ satisfy $a^p = \beta^*\bar{a}^p$ and

$$da^p + \eta^p(a^q)\theta^a = a^p_i\theta^i, \quad i, j, \ldots = 1, \ldots, n = \dim B,$$

where θ^i, θ^a are the components of the canonical form of $W^1(P)$.

Proposition 3. Let \bar{a}^p be the coordinate functions of a geometric object field $\sigma: B \rightarrow E$, let ω be the fundamental form of the connection Γ, let ϖ_1 be the canonical form of $H^1(B)$ and let $p_1: H^1(B) \otimes P \rightarrow H^1(B) \otimes P \rightarrow P$ be the product projections. Put $\bar{a} = p_1^*\bar{a}$, $\varpi = p_1^*\varpi_1$ and denote by ω^a or ϖ^i the components of ω or ϖ_1, respectively. Then the coordinate functions a^p, a^q_i of $V\sigma$ on $H^1(B) \otimes P$ satisfy $a^p = p_1^*\bar{a}^p$ and

$$da^p + \eta^p(a^q)\omega^a = a^p_i\varpi^i.$$

Proof. This is a direct consequence of (9) and of Propositions 1 and 2.

Remark 1. Equations (10) represent the invariant form of the corresponding local coordinate expressions deduced by Szybiak [15]. Indeed, consider a coordinate neighbourhood $D \subset B$ and a local coordinate system ξ on D with coordinates ξ^i. Then ξ determines a cross section $\xi: D \rightarrow H^1(B)$ and it holds $\xi^*\varpi^i = d\xi^i$. Further, if $\varrho: D \rightarrow P$ is a cross section, then we have $\varrho^*\omega^a = \Gamma^1_\varrho(\xi)d\xi^i$. (Clearly, ϖ^i or ϱ^i are the components of ω or ϖ_1, respectively.) The pair (ξ, ϱ) is a cross section $D \rightarrow H^1(B) \otimes P$. Set $\bar{a}^p = (\xi, \varrho)^*a^p$, $\bar{a}^p_i = (\xi, \varrho)^*a^p_i$, then (10) implies

$$d\bar{a}^p + \eta^p(\bar{a}^q)d\xi^i = \bar{a}^p_i d\xi^i,$$

which is formula (15) of [15].
II. Recurrence formula. Assume that the direct product $H \times G$ of two Lie groups H and G acts on the left on a manifold A; we shall write

$$ (h, g)(a) = g(a)h^{-1}, \quad a \in A, \ h \in H, \ g \in G. $$

Let $Q(B, H)$ be a principal fibre bundle, let $F = F(B, A, H, Q)$ and let $\bar{q}: F \to B$ be the projection of this associated fibre bundle. According to (12), we shall write $h^{-1}v$ instead of the usual notation $vh, v \in Q, h \in H$. We introduce a left action of G on F by $g\{((v, a))\} = \{(v, g(a))\}$; this definition is correct since $g\{(hv, (a)h^{-1})\} = \{(hv, g(a)h^{-1})\} = \{(v, g(a))\}$. One sees also easily that this action of G on F is fibre-preserving.

Consider the associated fibre bundle $E(B, F, G, P) = (B, (B, A, H, Q), G, P)$ with projection $p: E \to B$. We define another projection $q: E \to B$ by $q\{(u, s)\} = \bar{q}(s), s \in F$. Since the action of G on F is fibre-preserving, this definition is correct. Hence every $E_x = p^{-1}(x)$ is a fibered manifold (E_x, q_x, B), where $q_x = q|E_x$. Define

$$ E_0 = \{z \in E; p(z) = q(z)\}, $$

so that E_0 is an associated bundle of the symbol $(B, A, H \times G, Q \boxtimes P)$. Every $(v, u) \in Q \times P$ determines a mapping of E_{uz} onto A, which will be denoted by $z \mapsto u^{-1}(z)v, z \in E_{uz}$. According to [9], $J^1 E_0$ is an associated bundle $(B, T^1_n(A), (H \times G)_n^1, W^1(Q \boxtimes P))$. Introduce

$$ \mathcal{S}^0_0 E = \bigcup_{z \in B} J^1_0 E_x \quad \text{or} \quad \mathcal{S}^1 E = \bigcup_{z \in B} J^1 E_x, $$

which is an associated bundle of the symbol $(B, T^1_n(A), H^1_n \times G, W^1(Q) \boxtimes P)$ or $(B, J^1 F, G, P)$ respectively.

Consider a cross section $\sigma: B \to E_0$ and a connection C on $P P^{-1}$. Since $E_0 \subset E$ and E is a fibre bundle associated with P, we can construct the absolute differential ∇_0 of σ with respect to C, which is a cross section of $\mathcal{S}^0_0 E$. Further, $W^1(Q \boxtimes P) = H^1(B) \boxtimes J^1 Q \boxtimes J^1 P$ and the representative $\Gamma: P \to J^1 P$ of connection C determines a reduction $R(\Gamma) = H^1(B) \boxtimes J^1 Q \boxtimes \Gamma(P)$ of $W^1(Q \boxtimes P)$ to the group $H^1_n \times G < (H \times G)_n^1$. Analogously to Section 1, there is an identification $\tau: R(\Gamma) \to W^1(Q) \boxtimes P$. Let $p_1: W^1(Q) \boxtimes P \to W^1(Q), p_2: W^1(Q) \boxtimes P \to P$ be the product projections.

Lemma 3. Let $\tilde{\gamma}$ be the restriction of the canonical form of $W^1(Q \boxtimes P)$ to $R(\Gamma)$, let ω be the fundamental form of connection Γ and let ϕ_1 be the canonical form of $W^1(Q)$. Then the diagram

$$ \begin{array}{ccc}
\mathfrak{g} & \xrightarrow{\omega} & T(P) \\
\downarrow p_3 & & \uparrow (p_2)_* \\
R^n \oplus \mathfrak{h} \oplus \mathfrak{g} & \xrightarrow{\tilde{\gamma}} & T[R(\Gamma)] \\
\downarrow (p_1, p_2) & & \uparrow (p_1)_* \\
R^n \oplus \mathfrak{h} & \xrightarrow{\phi_1} & T[W^1(Q)]
\end{array} $$

is commutative.
Proof is a simple replica of the proof of Proposition 1. The indirect form of \(j^1 \sigma \) is a mapping \(\Sigma_1: W^1(Q \boxtimes P) \to T^1(A) \), while the indirect form of \(V \sigma \) is a mapping \(V \Sigma: W^1(Q \boxtimes P) \to T^1(A) \).

Lemma 4. For every \(U \in R(\Gamma) \) it holds
\[
\Sigma_1(U) = (V \Sigma)(\tau(U)).
\]

Proof. Let \(U \) be the 1-jet of a local isomorphism of \(R^n \times H \times G \) into \(Q \boxtimes P \) determined by a triple \((\varphi, \psi, \varphi)\), where \(\varphi \) is a local diffeomorphism of \(R^n \) into \(B \) and \(\psi \) or \(\varphi \) is a local cross section of \(Q \) or \(P \) respectively, \(\varphi(0) = x, \varphi(x) = u \). Then \(\Sigma_1(U) = j_0^1[\varphi^{-1}(\varphi(y))(\sigma(\varphi(y)))\psi(\varphi(y))] \). On the other hand, \(\tau(U) = (V, u) \), where \(V \) is the 1-jet of the local isomorphism of \(R^n \times H \) into \(Q \) determined by the pair \((\varphi, \psi)\). Since
\[
C(x) = j_1^1[\varphi(y)u^{-1}],
\]
it is
\[
(V \sigma)(x) = j_2^1[w^{-1}(y)(\sigma(y))]
\]
and
\[
(V \Sigma)(V, u) = u^{-1}[(V \sigma)(x)] V = j_1^1[w^{-1}(\varphi(y))(\sigma(\varphi(y)))\psi(\varphi(y))] = \Sigma_1(U),
\]
Q.E.D.

Let \(y^b \) be some local coordinates on \(A \), let \(\bar{\omega}^a \) be a basis of \(b^* \) and let
\[
(14) \quad dy^b + \eta^b_c(y^c) \bar{\omega}^c + \eta^b_c(y^c) \bar{\omega}^c = 0, \quad b, c = 1, \ldots, \dim A,
\]
be the equations of the fundamental distribution on \((H \times G) \times A\). According to [9], if \(\bar{\omega}^b \) are the coordinate functions on \(Q \boxtimes P \) of a geometric object field \(\sigma: B \to E_\sigma \), then the coordinate functions of \(j^1 \sigma \) on \(W^1(Q \boxtimes P) \) satisfy \(a^b = \beta^* \bar{a}^b \) and
\[
(15) \quad da^b + \eta^b_a(a^c) \theta^c + \eta^b_a(a^c) \theta^c = a^b_\theta^i,
\]
where \(\theta^i, \theta^a, \theta^c \) are the components of the canonical form of \(W^1(Q \boxtimes P) \).

Lemma 5. Let \(\omega \) be the fundamental form of \(\Gamma \) and let \(\varphi_1 \) be the canonical form of \(W^1(Q) \). Put \(\omega = p_2^* \omega, \varphi_1 = p_1^* \varphi_1 \) and denote by \(\omega^a \) or \(\varphi^i, \varphi^a \) the components of \(\omega \) or \(\varphi_1 \) respectively. Then the coordinate functions \(a^b, a^i_b \) of \(V \sigma \) on \(W^1(Q) \boxtimes P \) satisfy \(a^b = p_2^* \bar{a}^b \) and
\[
(16) \quad da^b + \eta^b_a(a^c) \omega^a + \eta^b_a(a^c) \varphi^a = a^b_\varphi^i.
\]

Proof. This is a direct consequence of (15) and of Lemmas 3 and 4.

III. Absolute differentials of higher order. We introduce
\[
\mathcal{F}^1(E) = \bigcup_{E_x} J^1(B, E_x),
\]
which is an associated bundle of the symbol \((B, J^1(B, F), G, P)\). Since \(\mathcal{F}^1(E) \subset \mathcal{F}^1(E) \) and \(\mathcal{F}^1(E) \) is associated with \(P \), we can construct the
absolute differential of the cross section $V\sigma: B \to \mathcal{F}^1(E)$ with respect to C, which will be called the absolute differential of second order of σ with respect to C and will be denoted by $V^2\sigma = V(V\sigma)$. Roughly speaking, the absolute differential of order r of σ with respect to C is defined by induction $V^r\sigma = V(V^{r-1}\sigma)$. Using the results of [5] and [7], we can describe this recurrence procedure in more details as follows. Set

$$\mathcal{F}_0^r(E) = \bigcup_{x \in B} J^r_x(B, E_x) \quad \text{or} \quad \mathcal{F}^r(E) = \bigcup_{x \in B} J^r(B, E_x),$$

which is an associated fibre bundle of the symbol $(B, \mathcal{T}_n^r(F), \mathcal{L}_n \times G, \mathcal{H}^r(B) \boxtimes P)$ or $(B, \mathcal{J}^r(B, F), G, P)$, respectively. (We recall that $J^r(B, E_x)$ denotes the space of all semiholonomic r-jets of B into E_x, see [3]). Assume by induction, that we have constructed the absolute differential $V^{r-1}\sigma$ as a cross section of $\mathcal{F}_0^{r-1}(E)$. Since $\mathcal{F}_0^{r-1}(E) \subseteq \mathcal{F}^{r-1}(E)$ and $\mathcal{F}^{r-1}(E)$ is associated with P, we can construct the absolute differential $V(V^{r-1}\sigma)$ of $V^{r-1}\sigma$ with respect to C. According to [5] and [7], $V(V^{r-1}\sigma) = V^r\sigma$ is a cross section of $\mathcal{F}_0^r(E)$.

The local coordinates y^p on F are prolonged to some local coordinates $y^p, y^q, \ldots, y^p_{i_1 \ldots i_r}$ on $\mathcal{T}_n^r(F)$, [4]. The analogous local coordinates on $\mathcal{T}_n^{r-1}(F)$ will be denoted by $\bar{y}^p, \ldots, \bar{y}^p_{i_1 \ldots i_{r-1}}$. The coordinate functions of $V^r\sigma: B \to \mathcal{F}_0^r(E)$ can be treated by a recurrent algorithm whose first step is described in Proposition 3. Assume by induction that we have applied this algorithm $(r-1)$-times and that we have deduced the equations of the fundamental distribution on $(\mathcal{L}^{r-1}_n \times G) \times \mathcal{T}_n^{r-1}(F)$ in the form

$$d\bar{y}^p + \eta^p_\alpha(\bar{y}^q) \hat{\omega}^\alpha = 0,$$

$$d\bar{y}^q + \Phi_q^p(\bar{y}^q, \bar{y}^q, \hat{\omega}_j, \hat{\omega}_k) = 0,$$

$$\vdots$$

where $\hat{\omega}_\alpha$ is a basis of g^* and $\hat{\omega}_j, \ldots, \hat{\omega}_{j_1 \ldots j_{r-1}}$ is the natural basis of \mathfrak{g}^{r-1}. Let $\mu: H^r(B) \boxtimes P \to H^{r-1}(B) \boxtimes P$ be the natural (jet) projection and let p_1 and p_2 be the product projections of $H^r(B) \boxtimes P$.

Proposition 4. Let $\bar{a}^p, \ldots, \bar{a}^p_{i_1 \ldots i_{r-1}}$ be the coordinate functions on $H^{r-1}(B) \boxtimes P$ of $V^{r-1}\sigma$, let w_σ be the connection form of Γ and let φ_r be the canonical form of $H^r(B)$. Put $\omega = p_1^*w_\sigma, \varphi_r = p_1^*\varphi_r$ and denote by ω^α or $\varphi^i, \varphi^q, \ldots, \varphi^q_{i_1 \ldots i_{r-1}}$ the components of ω or φ_r respectively. Then the coordinate functions $a^p, \ldots, a^p_{i_1 \ldots i_r}$ of $V^r\sigma$ on $H^r(B) \boxtimes P$ satisfy $a^p = \mu^*\bar{a}^p, \ldots, a^p_{i_1 \ldots i_{r-1}} = \mu^*\bar{a}^p_{i_1 \ldots i_{r-1}}$ and

$$da^p + \eta^p_\alpha(a^q) \omega^\alpha = a^p_i \varphi^i,$$

$$da^q + \Phi_q^p(a^q, a^q_i, \omega^k, \varphi^q_k) = a^q_i \varphi^q_k,$$

$$\vdots$$

$$da^p_{i_1 \ldots i_{r-1}} + \Phi_{i_1 \ldots i_{r-1}}^p(a^q, \ldots, a^q_{i_1 \ldots i_{r-1}}, \omega^k, \varphi^q_k, \ldots, \varphi^q_{i_1 \ldots i_{r-1}}) = a^p_{i_1 \ldots i_{r-1}} \varphi^q.$$
Proof. If one considers the natural action of the direct product \(L_n^{-1} \times G \) on \(T_n^{-1}(F) \), then \(\mathcal{T}_0^{-1}(E) = (B, T_n^{-1}(F), L_n^{-1} \times G, H^{-1}(B) \otimes P) \) satisfies the assumptions of Section 2 provided one substitutes

\[
\begin{pmatrix}
A, & H, & Q, & E_0, & E \\
T_n^{-1}(F), & L_n^{-1}, & H^{-1}(B), & \mathcal{T}_0^{-1}(E), & \mathcal{T}_0^{-1}(E)
\end{pmatrix}.
\]

Further, \(\mathcal{T}_0^{-1} (\mathcal{T}_0^{-1}(E)) = \bigcup J_x (\mathcal{T}_0^{-1} E_x) \) and \(\mathcal{T}_0^{-1} (\mathcal{T}_0^{-1}(E)) = \bigcup J_x (\mathcal{T}_0^{-1} E_x) \) is a product of \(\mathcal{T}_0^{-1}(E) \) and \(\mathcal{T}_0^{-1}(E) \), where \(\tilde{\theta}_1 \) is the canonical form of \(W^1(H^{-1}(B)) \) and \(\pi_1, \pi_2 \) are the product projections of \(W^1(H^{-1}(B)) \otimes P \). Let \(\tilde{\omega} = \pi_x \tilde{\omega} \) and \(\theta_1 = \pi_x \tilde{\theta}_1 \) be the components of \(\tilde{\omega} \) or \(\tilde{\theta}_1 \), respectively. By Lemma 5, if \(\tilde{a}^p, \ldots, \tilde{a}^p_{i_1 \ldots i_{r-1}}, b^p, \ldots, b^p_{i_1 \ldots i_r} \) are the coordinate functions of \(V \) on \(W^1(H^{-1}(B)) \otimes P \), then it holds

\[
\begin{align*}
d\tilde{a}^p + \eta^p_0 (\tilde{a}^p) \tilde{\omega}^a &= b^p \theta^i, \\
d\tilde{a}^p + \Phi^p_1 (\tilde{a}^p, \tilde{a}^p_i, \tilde{\omega}^a, \theta^i_j) &= b^p \theta^i, \\
& \vdots \\
d\tilde{a}^p_{i_1 \ldots i_{r-1}} + \Phi^p_{i_1 \ldots i_{r-1}} (\tilde{a}^p, \ldots, \tilde{a}^p_{i_1 \ldots i_{r-1}}, \tilde{\omega}^a, \theta^i_j, \ldots, \theta^i_{i_1 \ldots i_{r-1}}) &= b^p_{i_1 \ldots i_{r-1}} \theta^i.
\end{align*}
\]

According to [5] and [7], the values of \(V \) lie in \(\mathcal{T}_0^{-1}(E) = \bigcup J_x (\mathcal{T}_0^{-1} E_x) \) is a product of \(\mathcal{T}_0^{-1}(E) \). This is characterized by \(\tilde{a}^p = b^p, \ldots, \tilde{a}^p_{i_1 \ldots i_{r-1}} = b^p_{i_1 \ldots i_{r-1}} \). Further we have \(H^r(B) \subset W^1(H^{-1}(B)) \) and the restriction of the canonical form of \(W^1(H^{-1}(B)) \) to \(T(H^r(B)) \) is the canonical form of \(H^r(B) \). Thus, restricting all quantities of (19) to \(H^r(B) \otimes P \), we obtain (18), Q.E.D.

It remains to show an algorithm for finding the equations of the fundamental distribution on \((L_n^{-1} \times G) \times T_n^{-1}(F) \).

Proposition 5. Using (17), write formally the relations

\[
\begin{align*}
dy^p + \eta^p_0 (y^p) \omega^a &= y^p \varphi^i, \\
dy^p + \Phi^p_1 (y^p, y^p_j, \omega^a, \varphi^l_j) &= y^p \varphi^l, \\
& \vdots \\
dy^p_{i_1 \ldots i_{r-1}} + \Phi^p_{i_1 \ldots i_{r-1}} (y^p, \ldots, y^p_{i_1 \ldots i_{r-1}}, \omega^a, \varphi^l_j, \ldots, \varphi^l_{i_1 \ldots i_{r-1}}) &= y^p_{i_1 \ldots i_{r-1}} \varphi^l.
\end{align*}
\]

Applying the exterior differentiation to the last row of (20) and replacing:

(a) \(\tilde{\varphi}^i, \ldots, \tilde{\varphi}^l_{i_1 \ldots i_{r-1}} \) according to the structure equations of \(\varphi^l \),
(b) \(\tilde{\omega}^a \) by \(\frac{1}{2} \varepsilon^a_{pr} \omega^p \wedge \omega^r \),
(c) \(\tilde{\varphi}^p \), \ldots, \(\tilde{\varphi}^p_{i_1 \ldots i_{r-1}} \) according to the structure equations of \(G \),

we obtain an expression of the form

\[
[dy^p_{i_1 \ldots i_r} + \Phi^p_{i_1 \ldots i_r} (y^p, \ldots, y^p_{i_1 \ldots i_r}, \omega^a, \varphi^l_j, \ldots, \varphi^l_{i_1 \ldots i_r})] \wedge \varphi^r = 0.
\]
Then the equations of the fundamental distribution on \((L_n × G) × \overline{T}_n^r(F)\) are

\[
\begin{align*}
\bar{d}y^p + \eta^p_\alpha(\bar{y}^q) \bar{\omega}^\alpha &= 0, \\
\bar{d}y^p_1 + \Phi^p_1(\bar{y}^q, \bar{y}^q_1, \bar{\omega}^\alpha, \bar{\omega}^\beta_1) &= 0, \\
\vdots \\
\bar{d}y^p_{1...r} + \Phi^p_{1...r}(\bar{y}^q, \bar{y}^q_1...r, \bar{\omega}^\alpha, \bar{\omega}^\beta_1...r) &= 0,
\end{align*}
\]

where \(\bar{\omega}^\beta_1...r\) is the natural basis of \(\overline{\mathbb{V}}_n^r\).

Proof. (In this proof, we shall use freely the notation of [9].) Using [9], we first deduce an algorithm for finding the equations of the fundamental distribution on \(G_n^r × \overline{T}_n^r(F)\). Since \(\overline{J^rE}\) or \(J^1(\overline{J^{r-1}E})\) can be considered as an associated bundle of the symbol \((B, \overline{T}_n^r(F), \overline{\mathbb{G}}_n^r, \overline{\mathbb{W}}^r(F))\) or \((B, T_n^r(\overline{T}_n^{r-1}(F)), (\overline{\mathbb{G}}_n^{r-1})^h, W^1(\overline{\mathbb{W}}^{r-1}(F)))\) respectively and it holds \(J^1(\overline{J^{r-1}(E)}) = \overline{J^rE}\), the results of [9] imply directly an algorithm for finding the equations of the fundamental distribution on \(G_n^r × \overline{T}_n^r(F)\). Then we obtain the equations of the fundamental distribution on \(G_n^r × \overline{T}_n^r(F)\) applying the inclusions \(G_n^r ⊂ \overline{G}_n^r\) and \(\overline{T}_n^r(F) ⊂ \overline{T}_n^r(F)\). This gives the following algorithm. Let

\[
\begin{align*}
\bar{d}y^p + \eta^p_\alpha(\bar{y}^q) \bar{\omega}^\alpha &= 0, \\
\bar{d}y^p_1 + \Phi^p_1(\bar{y}^q, \bar{y}^q_1, \bar{\omega}^\alpha, \bar{\omega}^\beta_1) &= 0, \\
\vdots \\
\bar{d}y^p_{1...r-1} + \Phi^p_{1...r-1}(\bar{y}^q, \bar{y}^q_1...r-1, \bar{\omega}^\alpha, \bar{\omega}^\beta_1...r-1) &= 0,
\end{align*}
\]

be the equations of the fundamental distribution on \(G_n^{r-1} × \overline{T}_n^{r-1}(F)\). Write formally the relations

\[
\begin{align*}
\bar{d}y^p + \eta^p_\alpha(\bar{y}^q) \theta^\alpha &= y^p_\beta \theta^\beta, \\
\bar{d}y^p_1 + \Phi^p_1(\bar{y}^q, \bar{y}^q_1, \theta^\alpha, \theta^\beta_1) &= y^p_{1j} \theta^j, \\
\vdots \\
\bar{d}y^p_{1...r-1} + \Phi^p_{1...r-1}(\bar{y}^q, \bar{y}^q_1...r-1, \theta^\alpha, \theta^\beta_1...r-1) &= y^p_{1...r-1j} \theta^j.
\end{align*}
\]

Applying the exterior differentiation to the last row of (23) and replacing \(d\theta^\beta_1...r-1, d\theta^\beta_1...r-1, \ldots, d\theta^\beta_1...r-1,\) according to the structure equations of \(\theta\), and \(d\bar{y}^p, \ldots, d\bar{y}^p_{1...r-1},\) according to (23), we obtain an expression of the form

\[
[\bar{d}y^p_{1...r-1} + \Phi^p_{1...r-1}(\bar{y}^q, \bar{y}^q_1...r-1, \theta^\alpha, \theta^\beta_1, \ldots, \theta^\beta_{1...r-1})] ∧ \theta^r = 0.
\]

Then the equations of the fundamental distribution on \(G_n^r × \overline{T}_n^r(F)\) are

\[
\begin{align*}
\bar{d}y^p + \eta^p_\alpha(\bar{y}^q) \bar{\omega}^\alpha &= 0, \\
\bar{d}y^p_1 + \Phi^p_1(\bar{y}^q, \bar{y}^q_1, \bar{\omega}^\alpha, \bar{\omega}^\beta_1) &= 0, \\
\vdots \\
\bar{d}y^p_{1...r} + \Phi^p_{1...r}(\bar{y}^q, \bar{y}^q_1...r, \bar{\omega}^\alpha, \bar{\omega}^\beta_1...r) &= 0.
\end{align*}
\]
Furthermore, there is a natural injection \(g \mapsto j'_0 g \) of \(G \) into \(T'_n(G) \), where \(j'_0 : \mathbb{R}^n \to G \) is the constant mapping \(x \mapsto g \); in this sense we may write \(G \subset T'_n(G) \). Then \(L'_n \times G \) is a subgroup of \(G'_n = \mathbb{R}^n \times T'_n(G) \) and one sees easily that its differential equations are

\[
\omega^i_0 = 0, \ldots, \omega^i_{n+1} = 0, \quad r = n + 1, \ldots, n + \dim G.
\]

Summarizing all these results into a direct algorithm, we obtain Proposition 5.

Remark 2. For \(r = 1 \), we obtain the following equations of the fundamental distribution on \((L'_n \times G) \times T'_n(F)\)

\[
\begin{align*}
\dot{d}y^p + \eta^a_p(y^q) \tilde{\omega}^a &= 0, \quad (25) \\
\dot{d}y^p + \frac{\partial \eta^a_p}{\partial y^q} y^q \tilde{\omega}^a - y^p \tilde{\omega}^i_0 &= 0.
\end{align*}
\]

Hence the invariant formula for the second absolute differential is

\[
\begin{align*}
\dot{d}a^p + \eta^a_p(a^q) \omega^a &= a^p_i \varphi^i, \quad (26) \\
\dot{d}a^p + \partial_\varphi \eta^a_p(a^q) a^i_q \omega^a - a^p_i \varphi^i &= a^p_i \varphi^i. \quad (27)
\end{align*}
\]

Remark 3. We shall evaluate the condition for \(a^p_i \) to be symmetric in both subscripts. We have

\[
\begin{align*}
\dot{d} \omega^a &= \frac{1}{2} c^a_{\rho \sigma} \omega^\rho \wedge \omega^\sigma + R^a_{ij} \varphi^i \wedge \varphi^j, \\
\dot{d} \varphi^i &= \varphi^i \wedge \varphi^j,
\end{align*}
\]

where \(R^a_{ij} \varphi^i \wedge \varphi^j \) is the curvature form of \(\Gamma \). The exterior differentiation of (26) yields

\[
[\dot{d} a^p + \partial_\varphi \eta^a_p(a^q) a^i_q \omega^a - a^p_i \varphi^i + R^a_{ij} \eta^a_p(a^q) \varphi^j] \wedge \varphi^i = 0.
\]

Comparing with (27), we find that \(a^p_i \) are symmetric in both subscripts if and only if

\[
\eta^a_p(a^q) R^a_{ij} \varphi^i \wedge \varphi^j = 0. \quad (28)
\]

Since \(\eta^a_p(y^q) \omega^a = 0 \) are the differential equations of the stability group of an element of \(F \), (28) can be explained geometrically as follows. Let \(G_x \) be the group of all isomorphisms of \(E_x \), let \(H_x \subset G_x \) be the stability group of \(\sigma(x) \in E_x \) and let \(g_x \) or \(b_x \) be the corresponding Lie algebra, cf. [10] or [11]. The curvature form \(\Omega(x) \) of \(\Gamma \) at \(x \) can be considered as an element of \(g_x \otimes \Lambda^2 T^*_x(B) \) and (28) implies that \((V^2 \sigma)(x) \) is holonomic if and only if the projection of \(\Omega(x) \) into \((g_x/b_x) \otimes \Lambda^2 T^*_x(B) \) vanishes. We have established this result in a quite different way in [10], Proposition 1.
References

INSTITUTE OF MATHEMATICS OF THE ČSAV
BRNO, CZECHOSLOVAKIA

Reçu par la Rédaction le 29. 10. 1971